|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import os |
|
import random |
|
import socket |
|
import sqlite3 |
|
import time |
|
import uuid |
|
from datetime import datetime |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import spaces |
|
import torch |
|
from PIL import Image |
|
from torchvision.utils import make_grid, save_image |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
import safety_check |
|
from sana_pipeline import SanaPipeline |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
|
|
DEMO_PORT = int(os.getenv("DEMO_PORT", "7860")) |
|
os.environ["GRADIO_EXAMPLES_CACHE"] = "./.gradio/cache" |
|
COUNTER_DB = os.getenv("COUNTER_DB", ".count.db") |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
style_list = [ |
|
{ |
|
"name": "(No style)", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, " |
|
"cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Manga", |
|
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", |
|
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", |
|
}, |
|
{ |
|
"name": "Digital Art", |
|
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", |
|
"negative_prompt": "photo, photorealistic, realism, ugly", |
|
}, |
|
{ |
|
"name": "Pixel art", |
|
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", |
|
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, " |
|
"majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, " |
|
"glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, " |
|
"disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, " |
|
"detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, " |
|
"ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "(No style)" |
|
SCHEDULE_NAME = ["Flow_DPM_Solver"] |
|
DEFAULT_SCHEDULE_NAME = "Flow_DPM_Solver" |
|
NUM_IMAGES_PER_PROMPT = 1 |
|
INFER_SPEED = 0 |
|
|
|
|
|
def norm_ip(img, low, high): |
|
|
|
img = img.clone() |
|
|
|
img.clamp_(min=low, max=high) |
|
img.sub_(low).div_(max(high - low, 1e-5)) |
|
return img |
|
|
|
|
|
def open_db(): |
|
db = sqlite3.connect(COUNTER_DB) |
|
db.execute("CREATE TABLE IF NOT EXISTS counter(app CHARS PRIMARY KEY UNIQUE, value INTEGER)") |
|
db.execute('INSERT OR IGNORE INTO counter(app, value) VALUES("Sana", 0)') |
|
return db |
|
|
|
|
|
def read_inference_count(): |
|
with open_db() as db: |
|
cur = db.execute('SELECT value FROM counter WHERE app="Sana"') |
|
db.commit() |
|
return cur.fetchone()[0] |
|
|
|
|
|
def write_inference_count(count): |
|
count = max(0, int(count)) |
|
with open_db() as db: |
|
db.execute(f'UPDATE counter SET value=value+{count} WHERE app="Sana"') |
|
db.commit() |
|
|
|
|
|
def run_inference(num_imgs=1): |
|
write_inference_count(num_imgs) |
|
count = read_inference_count() |
|
|
|
return ( |
|
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: " |
|
f"16px; color:red; font-weight: bold;'>{count}</span>" |
|
) |
|
|
|
|
|
def update_inference_count(): |
|
count = read_inference_count() |
|
return ( |
|
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: " |
|
f"16px; color:red; font-weight: bold;'>{count}</span>" |
|
) |
|
|
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--config", type=str, help="config") |
|
parser.add_argument( |
|
"--model_path", |
|
nargs="?", |
|
default="hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth", |
|
type=str, |
|
help="Path to the model file (positional)", |
|
) |
|
parser.add_argument("--output", default="./", type=str) |
|
parser.add_argument("--bs", default=1, type=int) |
|
parser.add_argument("--image_size", default=1024, type=int) |
|
parser.add_argument("--cfg_scale", default=5.0, type=float) |
|
parser.add_argument("--pag_scale", default=2.0, type=float) |
|
parser.add_argument("--seed", default=42, type=int) |
|
parser.add_argument("--step", default=-1, type=int) |
|
parser.add_argument("--custom_image_size", default=None, type=int) |
|
parser.add_argument("--share", action="store_true") |
|
parser.add_argument( |
|
"--shield_model_path", |
|
type=str, |
|
help="The path to shield model, we employ ShieldGemma-2B by default.", |
|
default="google/shieldgemma-2b", |
|
) |
|
|
|
return parser.parse_known_args()[0] |
|
|
|
|
|
args = get_args() |
|
|
|
|
|
|
|
|
|
args.share = True |
|
args.config = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" |
|
args.model_path = "hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
weight_dtype = torch.float16 |
|
model_path = args.model_path |
|
pipe = SanaPipeline(args.config) |
|
pipe.from_pretrained(model_path) |
|
pipe.register_progress_bar(gr.Progress()) |
|
|
|
|
|
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path) |
|
safety_checker_model = AutoModelForCausalLM.from_pretrained( |
|
args.shield_model_path, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
).to(device) |
|
|
|
|
|
def save_image_sana(img, seed="", save_img=False): |
|
unique_name = f"{str(uuid.uuid4())}_{seed}.png" |
|
save_path = os.path.join(f"output/online_demo_img/{datetime.now().date()}") |
|
os.umask(0o000) |
|
os.makedirs(save_path, exist_ok=True) |
|
unique_name = os.path.join(save_path, unique_name) |
|
if save_img: |
|
save_image(img, unique_name, nrow=1, normalize=True, value_range=(-1, 1)) |
|
|
|
return unique_name |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
@spaces.GPU(enable_queue=True) |
|
def generate( |
|
prompt: str = None, |
|
negative_prompt: str = "", |
|
style: str = DEFAULT_STYLE_NAME, |
|
use_negative_prompt: bool = False, |
|
num_imgs: int = 1, |
|
seed: int = 0, |
|
height: int = 1024, |
|
width: int = 1024, |
|
flow_dpms_guidance_scale: float = 5.0, |
|
flow_dpms_pag_guidance_scale: float = 2.0, |
|
flow_dpms_inference_steps: int = 20, |
|
randomize_seed: bool = False, |
|
): |
|
global INFER_SPEED |
|
|
|
box = run_inference(num_imgs) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
print(f"PORT: {DEMO_PORT}, model_path: {model_path}") |
|
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2): |
|
prompt = "A red heart." |
|
|
|
print(prompt) |
|
|
|
num_inference_steps = flow_dpms_inference_steps |
|
guidance_scale = flow_dpms_guidance_scale |
|
pag_guidance_scale = flow_dpms_pag_guidance_scale |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) |
|
|
|
pipe.progress_fn(0, desc="Sana Start") |
|
|
|
time_start = time.time() |
|
images = pipe( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
pag_guidance_scale=pag_guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_imgs, |
|
generator=generator, |
|
) |
|
|
|
pipe.progress_fn(1.0, desc="Sana End") |
|
INFER_SPEED = (time.time() - time_start) / num_imgs |
|
|
|
save_img = False |
|
if save_img: |
|
img = [save_image_sana(img, seed, save_img=save_image) for img in images] |
|
print(img) |
|
else: |
|
img = [ |
|
Image.fromarray( |
|
norm_ip(img, -1, 1) |
|
.mul(255) |
|
.add_(0.5) |
|
.clamp_(0, 255) |
|
.permute(1, 2, 0) |
|
.to("cpu", torch.uint8) |
|
.numpy() |
|
.astype(np.uint8) |
|
) |
|
for img in images |
|
] |
|
|
|
torch.cuda.empty_cache() |
|
|
|
return ( |
|
img, |
|
seed, |
|
f"<span style='font-size: 16px; font-weight: bold;'>Inference Speed: {INFER_SPEED:.3f} s/Img</span>", |
|
box, |
|
) |
|
|
|
|
|
model_size = "1.6" if "1600M" in args.model_path else "0.6" |
|
title = f""" |
|
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'> |
|
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/> |
|
</div> |
|
""" |
|
DESCRIPTION = f""" |
|
<p><span style="font-size: 36px; font-weight: bold;">Sana-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p> |
|
<p style="font-size: 16px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p> |
|
<p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github(coming soon)]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p> |
|
<p style="font-size: 16px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space, </p>running on node {socket.gethostname()}. |
|
<p style="font-size: 16px; font-weight: bold;">Unsafe word will give you a 'Red Heart' in the image instead.</p> |
|
""" |
|
if model_size == "0.6": |
|
DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo does not work on CPU.</p>" |
|
|
|
examples = [ |
|
'a cyberpunk cat with a neon sign that says "Sana"', |
|
"A very detailed and realistic full body photo set of a tall, slim, and athletic Shiba Inu in a white oversized straight t-shirt, white shorts, and short white shoes.", |
|
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.", |
|
"portrait photo of a girl, photograph, highly detailed face, depth of field", |
|
'make me a logo that says "So Fast" with a really cool flying dragon shape with lightning sparks all over the sides and all of it contains Indonesian language', |
|
"๐ถ Wearing ๐ถ flying on the ๐", |
|
"๐ง with ๐น in the โ๏ธ", |
|
"an old rusted robot wearing pants and a jacket riding skis in a supermarket.", |
|
"professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.", |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed", |
|
"a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending nature with modern design with a plush earth-toned bed textured stone walls circular fireplace massive uniquely shaped window framing snow-capped mountains dense forests", |
|
] |
|
|
|
css = """ |
|
.gradio-container{max-width: 640px !important} |
|
h1{text-align:center} |
|
""" |
|
with gr.Blocks(css=css, title="Sana") as demo: |
|
gr.Markdown(title) |
|
gr.HTML(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
info_box = gr.Markdown( |
|
value=f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: 16px; color:red; font-weight: bold;'>{read_inference_count()}</span>" |
|
) |
|
demo.load(fn=update_inference_count, outputs=info_box) |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", show_label=False, columns=NUM_IMAGES_PER_PROMPT, format="png") |
|
speed_box = gr.Markdown( |
|
value=f"<span style='font-size: 16px; font-weight: bold;'>Inference speed: {INFER_SPEED} s/Img</span>" |
|
) |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Group(): |
|
with gr.Row(visible=True): |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1080, |
|
) |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1920, |
|
) |
|
with gr.Row(): |
|
flow_dpms_inference_steps = gr.Slider( |
|
label="Sampling steps", |
|
minimum=5, |
|
maximum=40, |
|
step=1, |
|
value=18, |
|
) |
|
flow_dpms_guidance_scale = gr.Slider( |
|
label="CFG Guidance scale", |
|
minimum=1, |
|
maximum=10, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
flow_dpms_pag_guidance_scale = gr.Slider( |
|
label="PAG Guidance scale", |
|
minimum=1, |
|
maximum=4, |
|
step=0.5, |
|
value=2.0, |
|
) |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
style_selection = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label="Image Style", |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(visible=True): |
|
schedule = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=SCHEDULE_NAME, |
|
value=DEFAULT_SCHEDULE_NAME, |
|
label="Sampler Schedule", |
|
visible=True, |
|
) |
|
num_imgs = gr.Slider( |
|
label="Num Images", |
|
minimum=1, |
|
maximum=6, |
|
step=1, |
|
value=1, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
style_selection, |
|
use_negative_prompt, |
|
num_imgs, |
|
seed, |
|
height, |
|
width, |
|
flow_dpms_guidance_scale, |
|
flow_dpms_pag_guidance_scale, |
|
flow_dpms_inference_steps, |
|
randomize_seed, |
|
], |
|
outputs=[result, seed, speed_box, info_box], |
|
api_name="run", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
import huggingface_hub |
|
huggingface_hub.login(os.getenv('HF_TOKEN')) |
|
|
|
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=DEMO_PORT, debug=False, share=args.share) |
|
|