sana-zero / app.py
gen6scp's picture
Patched codes for ZeroGPU
d643072
#!/usr/bin/env python
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import argparse
import os
import random
import socket
import sqlite3
import time
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from torchvision.utils import make_grid, save_image
from transformers import AutoModelForCausalLM, AutoTokenizer
import safety_check
from sana_pipeline import SanaPipeline
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
#DEMO_PORT = int(os.getenv("DEMO_PORT", "15432"))
DEMO_PORT = int(os.getenv("DEMO_PORT", "7860"))
os.environ["GRADIO_EXAMPLES_CACHE"] = "./.gradio/cache"
COUNTER_DB = os.getenv("COUNTER_DB", ".count.db")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, "
"cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, "
"majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, "
"glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, "
"disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, "
"detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, "
"ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
SCHEDULE_NAME = ["Flow_DPM_Solver"]
DEFAULT_SCHEDULE_NAME = "Flow_DPM_Solver"
NUM_IMAGES_PER_PROMPT = 1
INFER_SPEED = 0
def norm_ip(img, low, high):
# Clone the tensor to avoid in-place modification on inference tensor
img = img.clone()
img.clamp_(min=low, max=high)
img.sub_(low).div_(max(high - low, 1e-5))
return img
def open_db():
db = sqlite3.connect(COUNTER_DB)
db.execute("CREATE TABLE IF NOT EXISTS counter(app CHARS PRIMARY KEY UNIQUE, value INTEGER)")
db.execute('INSERT OR IGNORE INTO counter(app, value) VALUES("Sana", 0)')
return db
def read_inference_count():
with open_db() as db:
cur = db.execute('SELECT value FROM counter WHERE app="Sana"')
db.commit()
return cur.fetchone()[0]
def write_inference_count(count):
count = max(0, int(count))
with open_db() as db:
db.execute(f'UPDATE counter SET value=value+{count} WHERE app="Sana"')
db.commit()
def run_inference(num_imgs=1):
write_inference_count(num_imgs)
count = read_inference_count()
return (
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: "
f"16px; color:red; font-weight: bold;'>{count}</span>"
)
def update_inference_count():
count = read_inference_count()
return (
f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: "
f"16px; color:red; font-weight: bold;'>{count}</span>"
)
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config")
parser.add_argument(
"--model_path",
nargs="?",
default="hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth",
type=str,
help="Path to the model file (positional)",
)
parser.add_argument("--output", default="./", type=str)
parser.add_argument("--bs", default=1, type=int)
parser.add_argument("--image_size", default=1024, type=int)
parser.add_argument("--cfg_scale", default=5.0, type=float)
parser.add_argument("--pag_scale", default=2.0, type=float)
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--step", default=-1, type=int)
parser.add_argument("--custom_image_size", default=None, type=int)
parser.add_argument("--share", action="store_true")
parser.add_argument(
"--shield_model_path",
type=str,
help="The path to shield model, we employ ShieldGemma-2B by default.",
default="google/shieldgemma-2b",
)
return parser.parse_known_args()[0]
args = get_args()
#================================================================================
# Adding this default argument for HF instance
#================================================================================
args.share = True
args.config = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml"
args.model_path = "hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth"
if torch.cuda.is_available():
weight_dtype = torch.float16
model_path = args.model_path
pipe = SanaPipeline(args.config)
pipe.from_pretrained(model_path)
pipe.register_progress_bar(gr.Progress())
# safety checker
safety_checker_tokenizer = AutoTokenizer.from_pretrained(args.shield_model_path)
safety_checker_model = AutoModelForCausalLM.from_pretrained(
args.shield_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
).to(device)
def save_image_sana(img, seed="", save_img=False):
unique_name = f"{str(uuid.uuid4())}_{seed}.png"
save_path = os.path.join(f"output/online_demo_img/{datetime.now().date()}")
os.umask(0o000) # file permission: 666; dir permission: 777
os.makedirs(save_path, exist_ok=True)
unique_name = os.path.join(save_path, unique_name)
if save_img:
save_image(img, unique_name, nrow=1, normalize=True, value_range=(-1, 1))
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@torch.no_grad()
@torch.inference_mode()
@spaces.GPU(enable_queue=True)
def generate(
prompt: str = None,
negative_prompt: str = "",
style: str = DEFAULT_STYLE_NAME,
use_negative_prompt: bool = False,
num_imgs: int = 1,
seed: int = 0,
height: int = 1024,
width: int = 1024,
flow_dpms_guidance_scale: float = 5.0,
flow_dpms_pag_guidance_scale: float = 2.0,
flow_dpms_inference_steps: int = 20,
randomize_seed: bool = False,
):
global INFER_SPEED
# seed = 823753551
box = run_inference(num_imgs)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
print(f"PORT: {DEMO_PORT}, model_path: {model_path}")
if safety_check.is_dangerous(safety_checker_tokenizer, safety_checker_model, prompt, threshold=0.2):
prompt = "A red heart."
print(prompt)
num_inference_steps = flow_dpms_inference_steps
guidance_scale = flow_dpms_guidance_scale
pag_guidance_scale = flow_dpms_pag_guidance_scale
if not use_negative_prompt:
negative_prompt = None # type: ignore
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
pipe.progress_fn(0, desc="Sana Start")
time_start = time.time()
images = pipe(
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
pag_guidance_scale=pag_guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_imgs,
generator=generator,
)
pipe.progress_fn(1.0, desc="Sana End")
INFER_SPEED = (time.time() - time_start) / num_imgs
save_img = False
if save_img:
img = [save_image_sana(img, seed, save_img=save_image) for img in images]
print(img)
else:
img = [
Image.fromarray(
norm_ip(img, -1, 1)
.mul(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to("cpu", torch.uint8)
.numpy()
.astype(np.uint8)
)
for img in images
]
torch.cuda.empty_cache()
return (
img,
seed,
f"<span style='font-size: 16px; font-weight: bold;'>Inference Speed: {INFER_SPEED:.3f} s/Img</span>",
box,
)
model_size = "1.6" if "1600M" in args.model_path else "0.6"
title = f"""
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/>
</div>
"""
DESCRIPTION = f"""
<p><span style="font-size: 36px; font-weight: bold;">Sana-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p>
<p style="font-size: 16px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p>
<p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github(coming soon)]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p>
<p style="font-size: 16px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space, </p>running on node {socket.gethostname()}.
<p style="font-size: 16px; font-weight: bold;">Unsafe word will give you a 'Red Heart' in the image instead.</p>
"""
if model_size == "0.6":
DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"
examples = [
'a cyberpunk cat with a neon sign that says "Sana"',
"A very detailed and realistic full body photo set of a tall, slim, and athletic Shiba Inu in a white oversized straight t-shirt, white shorts, and short white shoes.",
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, light pollution, cinematic atmosphere, art nouveau style, illustration art artwork by SenseiJaye, intricate detail.",
"portrait photo of a girl, photograph, highly detailed face, depth of field",
'make me a logo that says "So Fast" with a really cool flying dragon shape with lightning sparks all over the sides and all of it contains Indonesian language',
"๐Ÿถ Wearing ๐Ÿ•ถ flying on the ๐ŸŒˆ",
"๐Ÿ‘ง with ๐ŸŒน in the โ„๏ธ",
"an old rusted robot wearing pants and a jacket riding skis in a supermarket.",
"professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.",
"Astronaut in a jungle, cold color palette, muted colors, detailed",
"a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending nature with modern design with a plush earth-toned bed textured stone walls circular fireplace massive uniquely shaped window framing snow-capped mountains dense forests",
]
css = """
.gradio-container{max-width: 640px !important}
h1{text-align:center}
"""
with gr.Blocks(css=css, title="Sana") as demo:
gr.Markdown(title)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
info_box = gr.Markdown(
value=f"<span style='font-size: 16px; font-weight: bold;'>Total inference runs: </span><span style='font-size: 16px; color:red; font-weight: bold;'>{read_inference_count()}</span>"
)
demo.load(fn=update_inference_count, outputs=info_box) # update the value when re-loading the page
# with gr.Row(equal_height=False):
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", show_label=False, columns=NUM_IMAGES_PER_PROMPT, format="png")
speed_box = gr.Markdown(
value=f"<span style='font-size: 16px; font-weight: bold;'>Inference speed: {INFER_SPEED} s/Img</span>"
)
with gr.Accordion("Advanced options", open=False):
with gr.Group():
with gr.Row(visible=True):
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1080,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1920,
)
with gr.Row():
flow_dpms_inference_steps = gr.Slider(
label="Sampling steps",
minimum=5,
maximum=40,
step=1,
value=18,
)
flow_dpms_guidance_scale = gr.Slider(
label="CFG Guidance scale",
minimum=1,
maximum=10,
step=0.1,
value=5.0,
)
flow_dpms_pag_guidance_scale = gr.Slider(
label="PAG Guidance scale",
minimum=1,
maximum=4,
step=0.5,
value=2.0,
)
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
schedule = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=SCHEDULE_NAME,
value=DEFAULT_SCHEDULE_NAME,
label="Sampler Schedule",
visible=True,
)
num_imgs = gr.Slider(
label="Num Images",
minimum=1,
maximum=6,
step=1,
value=1,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
style_selection,
use_negative_prompt,
num_imgs,
seed,
height,
width,
flow_dpms_guidance_scale,
flow_dpms_pag_guidance_scale,
flow_dpms_inference_steps,
randomize_seed,
],
outputs=[result, seed, speed_box, info_box],
api_name="run",
)
if __name__ == "__main__":
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN'))
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=DEMO_PORT, debug=False, share=args.share)