Spaces:
Runtime error
Runtime error
Update src/populate.py
Browse files- src/populate.py +10 -6
src/populate.py
CHANGED
@@ -8,23 +8,27 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
11 |
-
print("
|
12 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
13 |
-
print("
|
14 |
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|
16 |
-
print(f"get_leaderboard_df: Converted raw data to JSON. Number of entries: {len(all_data_json)}")
|
17 |
|
18 |
df = pd.DataFrame.from_records(all_data_json)
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
22 |
df = df[cols].round(decimals=2)
|
23 |
-
|
|
|
24 |
|
25 |
# filter out if any of the benchmarks have not been produced
|
26 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
27 |
-
print("get_leaderboard_df: DataFrame filtered for NaN values in benchmarks.")
|
28 |
return raw_data, df
|
29 |
|
30 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
11 |
+
print("before get_raw_eval_results") # blz
|
12 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
13 |
+
print("after get_raw_eval_results") # blz
|
14 |
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|
|
|
16 |
|
17 |
df = pd.DataFrame.from_records(all_data_json)
|
18 |
+
|
19 |
+
# Print the name of the average field from AutoEvalColumn
|
20 |
+
print("Name of the average field in AutoEvalColumn:", AutoEvalColumn.average.name)
|
21 |
+
|
22 |
+
# Print DataFrame column names
|
23 |
+
print("DataFrame column names:", df.columns)
|
24 |
|
25 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
26 |
df = df[cols].round(decimals=2)
|
27 |
+
|
28 |
+
print("after df things") # blz
|
29 |
|
30 |
# filter out if any of the benchmarks have not been produced
|
31 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
32 |
return raw_data, df
|
33 |
|
34 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|