gblazex commited on
Commit
e120f5c
·
1 Parent(s): bb0304e

Update src/populate.py

Browse files
Files changed (1) hide show
  1. src/populate.py +10 -6
src/populate.py CHANGED
@@ -8,23 +8,27 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
11
- print("get_leaderboard_df: Starting to process leaderboard data.")
12
  raw_data = get_raw_eval_results(results_path, requests_path)
13
- print("get_leaderboard_df: Raw eval results obtained.")
14
 
15
  all_data_json = [v.to_dict() for v in raw_data]
16
- print(f"get_leaderboard_df: Converted raw data to JSON. Number of entries: {len(all_data_json)}")
17
 
18
  df = pd.DataFrame.from_records(all_data_json)
19
- print("get_leaderboard_df: DataFrame created from records.")
 
 
 
 
 
20
 
21
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
22
  df = df[cols].round(decimals=2)
23
- print("get_leaderboard_df: DataFrame sorted and columns rounded.")
 
24
 
25
  # filter out if any of the benchmarks have not been produced
26
  df = df[has_no_nan_values(df, benchmark_cols)]
27
- print("get_leaderboard_df: DataFrame filtered for NaN values in benchmarks.")
28
  return raw_data, df
29
 
30
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
 
8
  from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
11
+ print("before get_raw_eval_results") # blz
12
  raw_data = get_raw_eval_results(results_path, requests_path)
13
+ print("after get_raw_eval_results") # blz
14
 
15
  all_data_json = [v.to_dict() for v in raw_data]
 
16
 
17
  df = pd.DataFrame.from_records(all_data_json)
18
+
19
+ # Print the name of the average field from AutoEvalColumn
20
+ print("Name of the average field in AutoEvalColumn:", AutoEvalColumn.average.name)
21
+
22
+ # Print DataFrame column names
23
+ print("DataFrame column names:", df.columns)
24
 
25
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
26
  df = df[cols].round(decimals=2)
27
+
28
+ print("after df things") # blz
29
 
30
  # filter out if any of the benchmarks have not been produced
31
  df = df[has_no_nan_values(df, benchmark_cols)]
 
32
  return raw_data, df
33
 
34
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: