leaderboard / app.py
gblazex's picture
Update app.py
af70252 verified
raw
history blame
17.8 kB
# https://www.gradio.app/playground
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# blz -------------------------
import time
app_start_time = time.time()
"""
import builtins
# Global counter for file openings
file_open_count = 0
def log_file_access(file_name):
global file_open_count
file_open_count += 1
print(f"File '{file_name}' opened for reading. Total count: {file_open_count}")
# Patch built-in open
original_open = builtins.open
def custom_open(*args, **kwargs):
file_name = args[0] if args else kwargs.get('file', 'Unknown')
log_file_access(file_name)
return original_open(*args, **kwargs)
builtins.open = custom_open
"""
import json
def print_first_json_content(directory):
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith(".json"):
json_file_path = os.path.join(root, file)
try:
with open(json_file_path, 'r') as json_file:
data = json.load(json_file)
print(f"Contents of {json_file_path}:")
print(json.dumps(data, indent=4))
return True
except Exception as e:
print(f"Error reading {json_file_path}: {e}")
return False
print("No JSON file found.")
return False
import os
def count_files_in_directory_tree(directory):
file_count = 0
for root, dirs, files in os.walk(directory):
file_count += len(files)
return file_count
from huggingface_hub import hf_hub_download, Repository
def download_dataset(repo_id, local_dir):
# Clone the repository
repo_id_full = f"https://huggingface.co/datasets/{repo_id}"
repo = Repository(local_dir=local_dir, clone_from=repo_id_full)
files_cnt = count_files_in_directory_tree(local_dir)
print(f"{local_dir}: {files_cnt}")
# print_first_json_content(local_dir)
# Alternatively, you can download specific files using hf_hub_download
# file_path = hf_hub_download(repo_id, filename="your_file_name")
# Usage
#download_dataset("https://huggingface.co/datasets/open-llm-leaderboard/requests", "new/requests")
#download_dataset("datasets/open-llm-leaderboard/results", "new/results")
# blz end -------------------
def restart_space():
API.restart_space(repo_id=REPO_ID, token=TOKEN)
try:
print(EVAL_REQUESTS_PATH)
download_dataset(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH)
#snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
#)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
download_dataset(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH)
#snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
#)
except Exception:
restart_space()
print("after downloading datasets") # BLZ
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
print("after get_leaderboard_df()") # BLZ
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
print("after get_evaluation_queue_df()") # BLZ
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
query: str,
recent7: bool,
recent14: bool,
recent21: bool
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, recent7, recent14, recent21)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, recent7: bool, recent14: bool, recent21: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
# blz
if recent7:
filtered_df = df[df[AutoEvalColumn.recent7.name] == True]
if recent14:
filtered_df = df[df[AutoEvalColumn.recent14.name] == True]
if recent21:
filtered_df = df[df[AutoEvalColumn.recent21.name] == True]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(
value=False, label="Show gated/private/deleted models", interactive=True
)
with gr.Row():
filter_recent7 = gr.Checkbox(
value=False, label="Recent (7 days)", interactive=True
)
filter_recent14 = gr.Checkbox(
value=False, label="Recent (14 days)", interactive=True
)
filter_recent21 = gr.Checkbox(
value=False, label="Recent (21 days)", interactive=True
)
with gr.Column(min_width=320):
#with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name]
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
filter_recent7,
filter_recent14,
filter_recent21,
],
leaderboard_table,
)
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, filter_recent7, filter_recent14, filter_recent21]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
filter_recent7,
filter_recent14,
filter_recent21,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
# blz --------------------
with gr.Row():
gr.Button("Download", link="/file=output/results.csv")
# end blz -------------------
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# blz ---
#import os
#os.makedirs('output', exist_ok=True)
#with open('output/results.csv', 'w') as f:
# f.write('hello world')
print(f"app start time {time.time() - app_start_time:.2f} seconds")
# blz end ----
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(allowed_paths=["output/"]) # blz allowed paths
print(f"app start after demo.queue {time.time() - app_start_time:.2f} seconds")