Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer,AutoModel | |
import gradio as gr | |
import torch | |
title = "🤖AI ChatBot" | |
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" | |
examples = [["How are you?"]] | |
# Load model directly | |
from transformers import AutoModel | |
#model = AutoModel.from_pretrained("ironlanderl/gemma-2-2b-it-Q5_K_M-GGUF") | |
#modelName = "google/gemma-2-2b-it" | |
#modelName = "ironlanderl/gemma-2-2b-it-Q5_K_M-GGUF" | |
modelName = "bartowski/Mistral-Nemo-Instruct-2407-GGUF" | |
modelId = "Mistral-Nemo-Instruct-2407-Q4_0_8_8.gguf" | |
tokenizer = AutoTokenizer.from_pretrained(modelName,gguf_file=modelId) | |
model = AutoModel.from_pretrained(modelName,gguf_file=modelId) | |
#model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.float16 ) | |
#stvlynn/Gemma-2-2b-Chinese-it | |
#tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") | |
#model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") | |
#The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead. | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
""" | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode( | |
input + tokenizer.eos_token, return_tensors="pt" | |
) | |
#attentionMask = torch.ones(new_user_input_ids.shape, dtype=torch.long) | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
history = model.generate( | |
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id | |
).tolist() | |
# convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
# print('decoded_response-->>'+str(response)) | |
response = [ | |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) | |
] # convert to tuples of list | |
# print('response-->>'+str(response)) | |
return response, history | |
gr.Interface( | |
fn=predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=["text", "state"], | |
outputs=["chatbot", "state"], | |
theme="finlaymacklon/boxy_violet", | |
).launch() | |
""" |