|
import gradio as gr |
|
import gradio as gr |
|
from pathlib import Path |
|
from PIL import Image |
|
import numpy as np |
|
import torch |
|
from torch.autograd import Variable |
|
from torchvision import transforms |
|
import torch.nn.functional as F |
|
import matplotlib.pyplot as plt |
|
import warnings |
|
from zipfile import ZipFile |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
|
|
from data_loader_cache import normalize, im_reader, im_preprocess |
|
from models import * |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
class GOSNormalize(object): |
|
''' |
|
Normalize the Image using torch.transforms |
|
''' |
|
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self,image): |
|
image = normalize(image,self.mean,self.std) |
|
return image |
|
|
|
|
|
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) |
|
|
|
def load_image(im_path, hypar): |
|
im = im_reader(im_path) |
|
im, im_shp = im_preprocess(im, hypar["cache_size"]) |
|
im = torch.divide(im,255.0) |
|
shape = torch.from_numpy(np.array(im_shp)) |
|
return transform(im).unsqueeze(0), shape.unsqueeze(0) |
|
|
|
|
|
def build_model(hypar,device): |
|
net = hypar["model"] |
|
|
|
|
|
if(hypar["model_digit"]=="half"): |
|
net.half() |
|
for layer in net.modules(): |
|
if isinstance(layer, nn.BatchNorm2d): |
|
layer.float() |
|
|
|
net.to(device) |
|
|
|
if(hypar["restore_model"]!=""): |
|
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) |
|
net.to(device) |
|
net.eval() |
|
return net |
|
|
|
|
|
def predict(net, inputs_val, shapes_val, hypar, device): |
|
''' |
|
Given an Image, predict the mask |
|
''' |
|
net.eval() |
|
|
|
if(hypar["model_digit"]=="full"): |
|
inputs_val = inputs_val.type(torch.FloatTensor) |
|
else: |
|
inputs_val = inputs_val.type(torch.HalfTensor) |
|
|
|
|
|
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) |
|
|
|
ds_val = net(inputs_val_v)[0] |
|
|
|
pred_val = ds_val[0][0,:,:,:] |
|
|
|
|
|
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) |
|
|
|
ma = torch.max(pred_val) |
|
mi = torch.min(pred_val) |
|
pred_val = (pred_val-mi)/(ma-mi) |
|
|
|
if device == 'cuda': torch.cuda.empty_cache() |
|
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) |
|
|
|
|
|
hypar = {} |
|
|
|
|
|
hypar["model_path"] ="./saved_models" |
|
hypar["restore_model"] = "isnet.pth" |
|
hypar["interm_sup"] = False |
|
|
|
|
|
hypar["model_digit"] = "full" |
|
hypar["seed"] = 0 |
|
|
|
hypar["cache_size"] = [1024, 1024] |
|
|
|
|
|
hypar["input_size"] = [1024, 1024] |
|
hypar["crop_size"] = [1024, 1024] |
|
|
|
hypar["model"] = ISNetDIS() |
|
|
|
|
|
net = build_model(hypar, device) |
|
|
|
|
|
def inference(image_path): |
|
|
|
image_tensor, orig_size = load_image(image_path, hypar) |
|
mask = predict(net, image_tensor, orig_size, hypar, device) |
|
|
|
pil_mask = Image.fromarray(mask).convert('L') |
|
im_rgb = Image.open(image_path).convert("RGB") |
|
|
|
im_rgba = im_rgb.copy() |
|
im_rgba.putalpha(pil_mask) |
|
file_name = Path(image_path).stem+"_nobg.png" |
|
file_path = Path(Path(image_path).parent,file_name) |
|
im_rgba.save(file_path) |
|
return str(file_path.resolve()) |
|
|
|
def bw(image_files): |
|
print(image_files) |
|
output = [] |
|
for idx, file in enumerate(image_files): |
|
print(file.name) |
|
img = Image.open(file.name) |
|
img = img.convert("L") |
|
output.append(img) |
|
print(output) |
|
return output |
|
|
|
def bw_single(image_file): |
|
img = Image.open(image_file) |
|
img = img.convert("L") |
|
return img |
|
|
|
def batch(image_files): |
|
output = [] |
|
for idx, file in enumerate(image_files): |
|
file = inference(file.name) |
|
output.append(file) |
|
|
|
with ZipFile("tmp.zip", "w") as zipObj: |
|
for idx, file in enumerate(output): |
|
zipObj.write(file, file.split("/")[-1]) |
|
return output,"tmp.zip" |
|
|
|
with gr.Blocks() as iface: |
|
gr.Markdown("# Remove Background") |
|
gr.HTML("Uses <a href='https://github.com/xuebinqin/DIS'>DIS</a> to remove background") |
|
with gr.Tab("Single Image"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(type='filepath') |
|
with gr.Column(): |
|
image_output = gr.Image(interactive=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
single_removebg = gr.Button("Remove Bg") |
|
with gr.Column(): |
|
single_clear = gr.Button("Clear") |
|
|
|
|
|
with gr.Tab("Batch"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
images = gr.File(file_count="multiple", file_types=["image"]) |
|
with gr.Column(): |
|
gallery = gr.Gallery() |
|
file_list = gr.Files(interactive=False) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
batch_removebg = gr.Button("Batch Process") |
|
with gr.Column(): |
|
batch_clear = gr.Button("Clear") |
|
|
|
single_removebg.click(inference, inputs=image, outputs=image_output) |
|
batch_removebg.click(batch, inputs=images, outputs=[gallery,file_list]) |
|
single_clear.click(lambda: None, None, image, queue=False) |
|
batch_clear.click(lambda: None, None, images, queue=False) |
|
|
|
iface.launch() |