gaviego
commited on
Commit
·
0d94b00
0
Parent(s):
Intial
Browse files- .gitignore +162 -0
- app.py +24 -0
- mnist.pth +0 -0
- model.py +15 -0
- train.py +53 -0
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
data
|
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import model
|
7 |
+
|
8 |
+
net = torch.load('mnist.pth')
|
9 |
+
net.eval()
|
10 |
+
|
11 |
+
def predict(img):
|
12 |
+
arr = np.array(img) / 255 # Assuming img is in the range [0, 255]
|
13 |
+
arr = np.expand_dims(arr, axis=0) # Add batch dimension
|
14 |
+
arr = torch.from_numpy(arr).float() # Convert to PyTorch tensor
|
15 |
+
output = net(arr)
|
16 |
+
topk_values, topk_indices = torch.topk(output, 2) # Get the top 2 classes
|
17 |
+
return [str(k) for k in topk_indices[0].tolist()]
|
18 |
+
|
19 |
+
|
20 |
+
sp = gr.Sketchpad(shape=(28, 28))
|
21 |
+
|
22 |
+
gr.Interface(fn=predict,
|
23 |
+
inputs=sp,
|
24 |
+
outputs=['label','label']).launch()
|
mnist.pth
ADDED
Binary file (440 kB). View file
|
|
model.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
# Define the model
|
4 |
+
class Net(nn.Module):
|
5 |
+
def __init__(self):
|
6 |
+
super(Net, self).__init__()
|
7 |
+
self.fc1 = nn.Linear(28*28, 128) # MNIST images are 28x28
|
8 |
+
self.fc2 = nn.Linear(128, 64)
|
9 |
+
self.fc3 = nn.Linear(64, 10) # There are 10 classes (0 through 9)
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
x = x.view(x.shape[0], -1) # Flatten the input
|
13 |
+
x = torch.relu(self.fc1(x))
|
14 |
+
x = torch.relu(self.fc2(x))
|
15 |
+
return self.fc3(x)
|
train.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import torchvision
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
import model
|
7 |
+
# Load the MNIST dataset
|
8 |
+
train_set = torchvision.datasets.MNIST(root='./data', train=True,
|
9 |
+
download=True, transform=transforms.ToTensor())
|
10 |
+
test_set = torchvision.datasets.MNIST(root='./data', train=False,
|
11 |
+
download=True, transform=transforms.ToTensor())
|
12 |
+
|
13 |
+
train_loader = torch.utils.data.DataLoader(train_set, batch_size=32,
|
14 |
+
shuffle=True)
|
15 |
+
test_loader = torch.utils.data.DataLoader(test_set, batch_size=32,
|
16 |
+
shuffle=False)
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
net = model.Net()
|
21 |
+
|
22 |
+
# Use CrossEntropyLoss for multi-class classification
|
23 |
+
criterion = nn.CrossEntropyLoss()
|
24 |
+
|
25 |
+
optimizer = optim.SGD(net.parameters(), lr=0.01)
|
26 |
+
|
27 |
+
# Train the model
|
28 |
+
for epoch in range(50): # Loop over the dataset multiple times
|
29 |
+
for i, data in enumerate(train_loader, 0):
|
30 |
+
inputs, labels = data
|
31 |
+
|
32 |
+
optimizer.zero_grad()
|
33 |
+
outputs = net(inputs)
|
34 |
+
loss = criterion(outputs, labels)
|
35 |
+
loss.backward()
|
36 |
+
optimizer.step()
|
37 |
+
|
38 |
+
print('Finished Training')
|
39 |
+
|
40 |
+
# Test the model
|
41 |
+
correct = 0
|
42 |
+
total = 0
|
43 |
+
with torch.no_grad():
|
44 |
+
for data in test_loader:
|
45 |
+
images, labels = data
|
46 |
+
outputs = net(images)
|
47 |
+
_, predicted = torch.max(outputs.data, 1)
|
48 |
+
total += labels.size(0)
|
49 |
+
correct += (predicted == labels).sum().item()
|
50 |
+
|
51 |
+
print(f'Accuracy of the network on test images: {100 * correct / total}%')
|
52 |
+
|
53 |
+
torch.save(net,'mnist.pth')
|