import cv2 import gradio as gr import numpy as np from paddleocr import PaddleOCR from PIL import Image from transformers import pipeline from transformers.pipelines.document_question_answering import apply_tesseract PIPE = pipeline("document-question-answering", "impira/layoutlm-document-qa") OCR = PaddleOCR( use_angle_cls=True, lang="en", det_limit_side_len=10_000, det_db_score_mode="slow", enable_mlkdnn=True, ) PADDLE_OCR_LABEL = "PaddleOCR (en)" TESSERACT_LABEL = "Tesseract (HF default)" def predict(image: Image.Image, question: str, ocr_engine: str): image_np = np.asarray(image) if ocr_engine == PADDLE_OCR_LABEL: ocr_result = OCR.ocr(image_np)[0] words = [x[1][0] for x in ocr_result] boxes = np.asarray([x[0] for x in ocr_result]) # (n_boxes, 4, 2) for box in boxes: cv2.polylines(image_np, [box.reshape(-1, 1, 2).astype(int)], True, (0, 255, 255), 3) x1 = boxes[:, :, 0].min(1) * 1000 / image.width y1 = boxes[:, :, 1].min(1) * 1000 / image.height x2 = boxes[:, :, 0].max(1) * 1000 / image.width y2 = boxes[:, :, 1].max(1) * 1000 / image.height # (n_boxes, 4) in xyxy format boxes = np.stack([x1, y1, x2, y2], axis=1).astype(int) elif ocr_engine == TESSERACT_LABEL: words, boxes = apply_tesseract(image, None, "") for x1, y1, x2, y2 in boxes: x1 = int(x1 * image.width / 1000) y1 = int(y1 * image.height / 1000) x2 = int(x2 * image.width / 1000) y2 = int(y2 * image.height / 1000) cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 255), 3) else: raise ValueError(f"Unsupported ocr_engine={ocr_engine}") word_boxes = list(zip(words, boxes)) result = PIPE(image, question, word_boxes)[0] return result["answer"], result["score"], image_np gr.Interface( fn=predict, inputs=[ gr.Image(type="pil"), "text", gr.Radio([PADDLE_OCR_LABEL, TESSERACT_LABEL]), ], outputs=[ gr.Textbox(label="Answer"), gr.Number(label="Score"), gr.Image(label="OCR results"), ], ).launch()