gatesla's picture
Trying to get buttons to work
72bb049 verified
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
import cv2 as cv
import numpy as np
from transformers import DetrImageProcessor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
from transformers.image_transforms import id_to_rgb
import os
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
YOLOV8_LABELS = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf, bbox_inches="tight")
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
# print("Labels " + str(labels))
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def contour_map(map_to_use, label_id):
mask = (map_to_use.cpu().numpy() == label_id)
visual_mask = (mask * 255).astype(np.uint8)
contours, hierarchy = cv.findContours(visual_mask, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
return contours, hierarchy
def segment_images(model_name,url_input,image_input,threshold):
####
# Get Image Object
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
elif image_input:
image = image_input
####
if "detr" in model_name:
pass
elif "maskformer" in model_name.lower():
# Load the processor and model
processor = MaskFormerImageProcessor.from_pretrained(model_name)
# print(type(processor))
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
return_string = ""
for r in results["segments_info"]:
contour_list, hierarchy = contour_map(results["segmentation"], r["id"])
label_name = model.config.id2label[r["label_id"]]
return_string += f"ID: {r['id']}\t Contour Count: {len(contour_list)}\t Score: {r['score']}\t Label Name: {label_name},\n"
r_shape = results["segmentation"].shape
new_image = np.zeros((r_shape[0], r_shape[1], 3), dtype=np.uint8)
new_image[:, :, 0] = (results["segmentation"].numpy()[:, :] * 2) % 256
new_image[:, :, 1] = (new_image[:, :, 0] * 3) %256
new_image[:, :, 2] = (new_image[:, :, 0] * 4) %256
new_image = Image.fromarray(new_image)
return new_image, return_string
pass
else:
raise NameError("Model is not implemented")
def set_example_image(example: list) -> dict:
# return gr.Image.update(value=example[0])
try:
return gr.Image(value=example[0]["path"])
except error as e:
print("In function: set_example_image")
print(e)
raise e
def set_example_url(example: list) -> dict:
# return gr.Textbox.update(value=example[0])
try:
return gr.Image(value=example[0]["path"])
except error as e:
print("In function: set_example_image")
print(e)
return gr.Image(example[0])
title = """<h1 id="title">Image Segmentation with Various Models</h1>"""
description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50-panoptic](https://huggingface.co/facebook/detr-resnet-50-panoptic) (Not implemented YET)
- [facebook/detr-resnet-101-panoptic](https://huggingface.co/facebook/detr-resnet-101-panoptic) (Not implemented YET)
- [facebook/maskformer-swin-large-coco](https://huggingface.co/facebook/maskformer-swin-large-coco)
Warning: On the free tier, MaskFormer takes a long time.
"""
models = ["facebook/detr-resnet-50-panoptic","facebook/detr-resnet-101-panoptic","facebook/maskformer-swin-large-coco"]
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
# twitter_link = """
# [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
# """
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
def changing():
# /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fhow-to-programmatically-enable-or-disable-components%2F52350%2F4%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
# return gr.Button.update(interactive=True), gr.Button.update(interactive=True)
# return gr.Button(interactive=True), gr.Button(interactive=True)
return gr.Button('Detect', interactive=True), gr.Button('Detect', interactive=True)
with demo:
gr.Markdown(title)
gr.Markdown(description)
# gr.Markdown(twitter_link)
options = gr.Dropdown(choices=models,label='Select Image Segmentation Model',show_label=True)
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image URL'):
with gr.Row():
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
img_output_from_url = gr.Image(height=650,width=650)
with gr.Row():
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
url_but = gr.Button('Detect', interactive=False)
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload= gr.Image(height=650,width=650)
with gr.Row():
example_images = gr.Dataset(components=[img_input],
samples=[[path.as_posix()]
for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) # Can't get case_sensitive to work
img_but = gr.Button('Detect', interactive=False)
# output_text1 = gr.outputs.Textbox(label="Confidence Values")
output_text1 = gr.components.Textbox(label="Confidence Values")
# https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
options.change(fn=changing, inputs=[], outputs=[img_but, url_but])
url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
# url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
# img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
# url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
# img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
# gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")
# demo.launch(enable_queue=True)
demo.launch() #removed (share=True)