import gradio as gr import spaces import transformers import torch model_id = "GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): messages = [] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) outputs = pipeline( messages, max_new_tokens=max_tokens, do_sample = True, temperature=temperature, top_p=top_p, eos_token_id=terminators ) yield outputs[0]["generated_text"][-1]["content"] """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, title = "🇮🇩 Sahabat AI (Gemma)", description = """This model is a fine-tuned version of SEA-LIONv3's Gemma model trained predominantly on Indonesian, Javanese, and Sundanese data. #### [Model page](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)""", examples = [["Tolong carin resep sop buntut dong"], ["Sopo wae sing ana ing Punakawan?"], ["Kumaha caritana si Kabayan?"]], additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()