Spaces:
Sleeping
Sleeping
File size: 6,881 Bytes
569299e ee1c253 569299e ec3a146 f6f3371 ee1c253 ec3a146 569299e f2f8639 f6f3371 ee1c253 569299e ec3a146 ee1c253 569299e f2f8639 569299e ec3a146 569299e ec3a146 569299e ec3a146 569299e ec3a146 569299e ec3a146 569299e ee1c253 ec3a146 569299e ec3a146 569299e ec3a146 569299e ec3a146 ee1c253 569299e ec3a146 ee1c253 f6f3371 569299e ec3a146 569299e ec3a146 569299e f6f3371 569299e f6f3371 ec3a146 569299e f6f3371 ec3a146 f6f3371 ec3a146 569299e ec3a146 569299e f2f8639 569299e ee1c253 f6f3371 ec3a146 569299e f6f3371 ec3a146 569299e ee1c253 569299e 95a5a2a 569299e ec3a146 569299e ee1c253 f6f3371 ec3a146 569299e ee1c253 569299e ec3a146 ee1c253 ec3a146 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
from ddpg import Agent
import gymnasium as gym
import numpy as np
import matplotlib.pyplot as plt
import torch
from captum.attr import (IntegratedGradients)
from gymnasium.wrappers import RecordVideo
class TrainingLoop:
def __init__(self, env_spec, output_path='./output/', seed=0, **kwargs):
assert env_spec in gym.envs.registry.keys()
self.defaults = {
"id": env_spec,
"continuous": True,
"gravity": -10.0,
"render_mode": None
}
self.env = gym.make(
**self.defaults
)
self.defaults.update(**kwargs)
torch.manual_seed(seed)
self.agent = None
self.output_path = output_path
# TODO: spec-to-hyperparameters look-up
def create_agent(self, alpha=0.000025, beta=0.00025, input_dims=[8], tau=0.001, batch_size=64, layer1_size=400, layer2_size=300, n_actions=4):
self.agent = Agent(alpha=alpha, beta=beta, input_dims=input_dims, tau=tau, env=self.env, batch_size=batch_size, layer1_size=layer1_size, layer2_size=layer2_size, n_actions=n_actions)
def train(self):
assert self.agent is not None
self.defaults["render_mode"] = None
self.env = gym.make(
**self.defaults
)
# self.agent.load_models()
score_history = []
for i in range(10000):
done = False
score = 0
obs, _ = self.env.reset()
while not done:
act = self.agent.choose_action(obs)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
self.agent.remember(obs, act, reward, new_state, int(done))
self.agent.learn()
score += reward
obs = new_state
score_history.append(score)
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
if i % 25 == 0:
self.agent.save_models()
self.env.close()
def load_trained(self):
assert self.agent is not None
self.defaults["render_mode"] = None
self.env = gym.make(
**self.defaults
)
self.agent.load_models()
score_history = []
for i in range(50):
done = False
score = 0
obs, _ = self.env.reset()
while not done:
act = self.agent.choose_action(obs)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
score += reward
obs = new_state
score_history.append(score)
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
self.env.close()
# Video Recording
# def render_video(self, episode_trigger=100):
# assert self.agent is not None
# self.defaults["render_mode"] = "rgb_array"
# self.env = gym.make(
# **self.defaults
# )
# episode_trigger_callable = lambda x: x % episode_trigger == 0
# self.env = RecordVideo(env=self.env, video_folder=self.output_path, name_prefix=f"{self.defaults['id']}-recording", episode_trigger=episode_trigger_callable, disable_logger=True)
# self.agent.load_models()
# score_history = []
# for i in range(200):
# done = False
# score = 0
# obs, _ = self.env.reset()
# while not done:
# act = self.agent.choose_action(observation=obs)
# new_state, reward, terminated, truncated, info = self.env.step(act)
# done = terminated or truncated
# score += reward
# obs = new_state
# score_history.append(score)
# print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
# self.env.close()
# Model Explainability
from captum.attr import (IntegratedGradients)
def _collect_running_baseline_average(self, num_iterations: int) -> torch.Tensor:
assert self.agent is not None
self.defaults["render_mode"] = None
self.env = gym.make(
**self.defaults
)
print("--------- Collecting running baseline average ----------")
self.agent.load_models()
sum_obs = torch.zeros(8)
for i in range(num_iterations):
done = False
score = 0
obs, _ = self.env.reset()
sum_obs += obs
# print(f"Baseline on interation #{i}: {obs}")
while not done:
act = self.agent.choose_action(obs, baseline=None)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
score += reward
obs = new_state
print(f"Baseline collected: {sum_obs / num_iterations}")
self.env.close()
return sum_obs / num_iterations
def explain_trained(self, option: str, num_iterations :int = 10) -> None:
assert self.agent is not None
baseline_options = {
0: torch.zeros(8),
1: self._collect_running_baseline_average(num_iterations),
}
baseline = baseline_options[option]
self.defaults["render_mode"] = "rgb_array"
self.env = gym.make(
**self.defaults
)
print("\n\n\n\n--------- Performing Attributions -----------")
self.agent.load_models()
print(self.agent.actor)
ig = IntegratedGradients(self.agent.actor)
self.agent.ig = ig
score_history = []
frames = []
for i in range(10):
done = False
score = 0
obs, _ = self.env.reset()
while not done:
frames.append(self.env.render())
act = self.agent.choose_action(observation=obs, baseline=baseline)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
score += reward
obs = new_state
score_history.append(score)
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
self.env.close()
try:
assert len(frames) == len(self.agent.attributions)
except AssertionError:
print("Frames and agent attribution history are not the same shape!")
else:
pass
return (frames, self.agent.attributions)
|