File size: 11,016 Bytes
569299e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6f3371
 
569299e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3a146
ee1c253
f6f3371
569299e
 
 
f6f3371
569299e
 
f6f3371
569299e
 
f6f3371
 
ee1c253
569299e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os 
import torch as T
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from captum.attr import (IntegratedGradients, LayerConductance, NeuronAttribution)

class OUActionNoise(object): # Ornstein-Uhlenbeck process -> Temporary correlated noise
    def __init__(self, mu, sigma=0.15, theta=0.2, dt=1e-2, x0=None):
        self.theta = theta
        self.mu = mu
        self.sigma = sigma
        self.dt = dt
        self.x0 = x0
        self.reset()

    def __call__(self):
        x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.sigma*np.sqrt(self.dt)*np.random.normal(size=self.mu.shape)
        self.x_prev = x
        return x
    
    def reset(self):
        self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)

class ReplayBuffer(object):
    def __init__(self, max_size, input_shape, n_actions):
        self.mem_size = max_size
        self.mem_cntr = 0
        self.state_memory = np.zeros((self.mem_size, *input_shape))
        self.new_state_memory = np.zeros((self.mem_size, *input_shape))
        self.action_memory = np.zeros((self.mem_size, n_actions))
        self.reward_memory = np.zeros(self.mem_size)
        self.terminal_memory = np.zeros(self.mem_size, dtype=np.float32)

    def store_transition(self, state, action, reward, state_, done):
        index = self.mem_cntr % self.mem_size # index of the memory

        self.state_memory[index] = state
        self.action_memory[index] = action
        self.reward_memory[index] = reward 
        self.new_state_memory[index] = state_
        self.terminal_memory[index] = 1 - done
        self.mem_cntr += 1


    def sample_buffer(self, batch_size):
        max_mem = min(self.mem_cntr, self.mem_size) # if memory is not full, use mem_cntr
        batch = np.random.choice(max_mem, batch_size)

        states = self.state_memory[batch]
        actions = self.action_memory[batch]
        rewards = self.reward_memory[batch]
        new_states = self.new_state_memory[batch]
        terminal = self.terminal_memory[batch]
        
        return states, actions, rewards, new_states, terminal
    
class CriticNetwork(nn.Module):
    def __init__(self, beta, input_dims, fc1_dims, fc2_dims, n_actions, name, chkpt_dir="tmp/ddpg"):
        super(CriticNetwork, self).__init__()
        self.input_dims = input_dims
        self.fc1_dims = fc1_dims
        self.fc2_dims = fc2_dims
        self.n_actions = n_actions
        self.checkpoint_dir = chkpt_dir
        self.checkpoint_file = os.path.join(self.checkpoint_dir, name+'_ddpg')
        self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
        f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
        T.nn.init.uniform_(self.fc1.weight.data, -f1, f1)
        T.nn.init.uniform_(self.fc1.bias.data, -f1, f1)
        self.bn1 = nn.LayerNorm(self.fc1_dims)
        self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
        f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
        T.nn.init.uniform_(self.fc2.weight.data, -f2, f2)
        T.nn.init.uniform_(self.fc2.bias.data, -f2, f2)
        self.bn2 = nn.LayerNorm(self.fc2_dims)

        self.action_value = nn.Linear(self.n_actions, self.fc2_dims)
        f3 = 0.003 # From paper
        self.q = nn.Linear(self.fc2_dims, 1)
        T.nn.init.uniform_(self.q.weight.data, -f3, f3)
        T.nn.init.uniform_(self.q.bias.data, -f3, f3)

        self.optimizer = optim.Adam(self.parameters(), lr=beta, weight_decay=0.01)
        self.device = T.device("cpu")

        self.to(self.device)

    def forward(self, state, action):
        state_value = self.fc1(state)
        state_value = self.bn1(state_value)
        state_value = F.relu(state_value)
        state_value = self.fc2(state_value)
        state_value = self.bn2(state_value)

        action_value = F.relu(self.action_value(action))
        state_action_value = F.relu(T.add(state_value, action_value))

        state_action_value = self.q(state_action_value)

        return state_action_value
    
    def save_checkpoint(self):
        print('... saving checkpoint ...')
        T.save(self.state_dict(), self.checkpoint_file)

    def load_checkpoint(self):
        print('... loading checkpoint ...')
        self.load_state_dict(T.load(self.checkpoint_file))


class ActorNetwork(nn.Module):
    def __init__(self, alpha, input_dims, fc1_dims, fc2_dims, n_actions, name, chkpt_dir="tmp/ddpg"):
        super(ActorNetwork, self).__init__()
        self.input_dims = input_dims
        self.fc1_dims = fc1_dims
        self.fc2_dims = fc2_dims
        self.n_actions = n_actions
        self.checkpoint_dir = chkpt_dir
        self.checkpoint_file = os.path.join(self.checkpoint_dir, name+'_ddpg')

        self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
        f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
        T.nn.init.uniform_(self.fc1.weight.data, -f1, f1)
        T.nn.init.uniform_(self.fc1.bias.data, -f1, f1)
        self.bn1 = nn.LayerNorm(self.fc1_dims)

        self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
        f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
        T.nn.init.uniform_(self.fc2.weight.data, -f2, f2)
        T.nn.init.uniform_(self.fc2.bias.data, -f2, f2)
        self.bn2 = nn.LayerNorm(self.fc2_dims)

        f3 = 0.003 # From paper
        self.mu = nn.Linear(self.fc2_dims, self.n_actions)
        T.nn.init.uniform_(self.mu.weight.data, -f3, f3)
        T.nn.init.uniform_(self.mu.bias.data, -f3, f3)
        T.nn.init.uniform_(self.mu.bias.data, -f3, f3)

        self.optimizer = optim.Adam(self.parameters(), lr=alpha)
        self.device = T.device("cpu")
        self.to(self.device)

    def forward(self, state):
        
        
        x = self.fc1(state)
        x = self.bn1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = self.bn2(x)
        x = F.relu(x)
        x = T.tanh(self.mu(x))

        return x

    def save_checkpoint(self):
        print('... saving checkpoint ...')
        T.save(self.state_dict(), self.checkpoint_file)

    def load_checkpoint(self):
        print('... loading checkpoint ...')
        self.load_state_dict(T.load(self.checkpoint_file))

class Agent(object):
    def __init__(self, alpha, beta, input_dims, tau, env, gamma=0.99, n_actions=2, max_size=1000000, layer1_size=400, layer2_size=300, batch_size=64):
        self.gamma = gamma
        self.tau = tau
        self.batch_size = batch_size
        self.memory = ReplayBuffer(max_size, input_dims, n_actions)

        self.actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="actor")
        self.critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="critic")

        self.target_actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="target_actor")
        self.target_critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="target_critic")

        self.noise = OUActionNoise(mu=np.zeros(n_actions))

        self.attributions = []
        self.ig : IntegratedGradients = None
        
        self.update_network_parameters(tau=1)

    def choose_action(self, observation, baseline: T.Tensor = None):
        self.actor.eval()
        observation = T.tensor(observation, dtype=T.float).to(self.actor.device)
        # print(f"Observation: {observation.shape=}")
        mu = self.actor(observation).to(self.actor.device)

        if self.ig is not None:
             attribution = self.ig.attribute(observation, baselines=baseline, n_steps=1)
             self.attributions.append(attribution)


        mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to(self.actor.device)
        self.actor.train()
        return mu_prime.cpu().detach().numpy()
    
    def remember(self, state, action, reward, new_state, done):
        self.memory.store_transition(state, action, reward, new_state, done)

    def learn(self):
        if self.memory.mem_cntr < self.batch_size:
            return
        state, action, reward, new_state, done = self.memory.sample_buffer(self.batch_size)
        reward = T.tensor(reward, dtype=T.float).to(self.critic.device)
        done = T.tensor(done).to(self.critic.device)
        new_state = T.tensor(new_state, dtype=T.float).to(self.critic.device)
        action = T.tensor(action, dtype=T.float).to(self.critic.device)
        state = T.tensor(state, dtype=T.float).to(self.critic.device)

        self.target_actor.eval()
        self.target_critic.eval()
        self.critic.eval()

        target_actions = self.target_actor.forward(new_state)
        critic_value_ = self.target_critic.forward(new_state, target_actions)
        critic_value = self.critic.forward(state, action)

        target = []
        for j in range(self.batch_size):
            target.append(reward[j] + self.gamma*critic_value_[j]*done[j])
        target = T.tensor(target).to(self.critic.device)
        target = target.view(self.batch_size, 1)   
    
        self.critic.train()
        self.critic.optimizer.zero_grad()
        critic_loss = F.mse_loss(target, critic_value)
        critic_loss.backward()
        self.critic.optimizer.step()
        self.critic.eval()
    
        self.actor.optimizer.zero_grad()
        mu = self.actor.forward(state)
        self.actor.train()
        actor_loss = -self.critic.forward(state, mu)
        actor_loss = T.mean(actor_loss)
        actor_loss.backward()
        self.actor.optimizer.step()

        self.update_network_parameters()

    def update_network_parameters(self, tau=None):
        if tau is None:
            tau = self.tau
        
        actor_params = self.actor.named_parameters()
        critic_params = self.critic.named_parameters()
        target_actor_params = self.target_actor.named_parameters()
        target_critic_params = self.target_critic.named_parameters()

        critic_state_dict = dict(critic_params)
        actor_state_dict = dict(actor_params)
        target_critic_state_dict = dict(target_critic_params)
        target_actor_state_dict = dict(target_actor_params)

        for name in critic_state_dict:
            critic_state_dict[name] = tau*critic_state_dict[name].clone() + (1-tau)*target_critic_state_dict[name].clone()

        self.target_critic.load_state_dict(critic_state_dict)
        
        for name in actor_state_dict:
            actor_state_dict[name] = tau*actor_state_dict[name].clone() + (1-tau)*target_actor_state_dict[name].clone()

        self.target_actor.load_state_dict(actor_state_dict)

    def save_models(self):
        self.actor.save_checkpoint()
        self.target_actor.save_checkpoint()
        self.critic.save_checkpoint()
        self.target_critic.save_checkpoint()

    def load_models(self):
        self.actor.load_checkpoint()
        self.target_actor.load_checkpoint()
        self.critic.load_checkpoint()
        self.target_critic.load_checkpoint()