Spaces:
Sleeping
Sleeping
File size: 11,016 Bytes
569299e f6f3371 569299e ec3a146 ee1c253 f6f3371 569299e f6f3371 569299e f6f3371 569299e f6f3371 ee1c253 569299e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
import torch as T
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from captum.attr import (IntegratedGradients, LayerConductance, NeuronAttribution)
class OUActionNoise(object): # Ornstein-Uhlenbeck process -> Temporary correlated noise
def __init__(self, mu, sigma=0.15, theta=0.2, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.sigma*np.sqrt(self.dt)*np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
class ReplayBuffer(object):
def __init__(self, max_size, input_shape, n_actions):
self.mem_size = max_size
self.mem_cntr = 0
self.state_memory = np.zeros((self.mem_size, *input_shape))
self.new_state_memory = np.zeros((self.mem_size, *input_shape))
self.action_memory = np.zeros((self.mem_size, n_actions))
self.reward_memory = np.zeros(self.mem_size)
self.terminal_memory = np.zeros(self.mem_size, dtype=np.float32)
def store_transition(self, state, action, reward, state_, done):
index = self.mem_cntr % self.mem_size # index of the memory
self.state_memory[index] = state
self.action_memory[index] = action
self.reward_memory[index] = reward
self.new_state_memory[index] = state_
self.terminal_memory[index] = 1 - done
self.mem_cntr += 1
def sample_buffer(self, batch_size):
max_mem = min(self.mem_cntr, self.mem_size) # if memory is not full, use mem_cntr
batch = np.random.choice(max_mem, batch_size)
states = self.state_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
new_states = self.new_state_memory[batch]
terminal = self.terminal_memory[batch]
return states, actions, rewards, new_states, terminal
class CriticNetwork(nn.Module):
def __init__(self, beta, input_dims, fc1_dims, fc2_dims, n_actions, name, chkpt_dir="tmp/ddpg"):
super(CriticNetwork, self).__init__()
self.input_dims = input_dims
self.fc1_dims = fc1_dims
self.fc2_dims = fc2_dims
self.n_actions = n_actions
self.checkpoint_dir = chkpt_dir
self.checkpoint_file = os.path.join(self.checkpoint_dir, name+'_ddpg')
self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
T.nn.init.uniform_(self.fc1.weight.data, -f1, f1)
T.nn.init.uniform_(self.fc1.bias.data, -f1, f1)
self.bn1 = nn.LayerNorm(self.fc1_dims)
self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
T.nn.init.uniform_(self.fc2.weight.data, -f2, f2)
T.nn.init.uniform_(self.fc2.bias.data, -f2, f2)
self.bn2 = nn.LayerNorm(self.fc2_dims)
self.action_value = nn.Linear(self.n_actions, self.fc2_dims)
f3 = 0.003 # From paper
self.q = nn.Linear(self.fc2_dims, 1)
T.nn.init.uniform_(self.q.weight.data, -f3, f3)
T.nn.init.uniform_(self.q.bias.data, -f3, f3)
self.optimizer = optim.Adam(self.parameters(), lr=beta, weight_decay=0.01)
self.device = T.device("cpu")
self.to(self.device)
def forward(self, state, action):
state_value = self.fc1(state)
state_value = self.bn1(state_value)
state_value = F.relu(state_value)
state_value = self.fc2(state_value)
state_value = self.bn2(state_value)
action_value = F.relu(self.action_value(action))
state_action_value = F.relu(T.add(state_value, action_value))
state_action_value = self.q(state_action_value)
return state_action_value
def save_checkpoint(self):
print('... saving checkpoint ...')
T.save(self.state_dict(), self.checkpoint_file)
def load_checkpoint(self):
print('... loading checkpoint ...')
self.load_state_dict(T.load(self.checkpoint_file))
class ActorNetwork(nn.Module):
def __init__(self, alpha, input_dims, fc1_dims, fc2_dims, n_actions, name, chkpt_dir="tmp/ddpg"):
super(ActorNetwork, self).__init__()
self.input_dims = input_dims
self.fc1_dims = fc1_dims
self.fc2_dims = fc2_dims
self.n_actions = n_actions
self.checkpoint_dir = chkpt_dir
self.checkpoint_file = os.path.join(self.checkpoint_dir, name+'_ddpg')
self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
f1 = 1./np.sqrt(self.fc1.weight.data.size()[0])
T.nn.init.uniform_(self.fc1.weight.data, -f1, f1)
T.nn.init.uniform_(self.fc1.bias.data, -f1, f1)
self.bn1 = nn.LayerNorm(self.fc1_dims)
self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
f2 = 1./np.sqrt(self.fc2.weight.data.size()[0])
T.nn.init.uniform_(self.fc2.weight.data, -f2, f2)
T.nn.init.uniform_(self.fc2.bias.data, -f2, f2)
self.bn2 = nn.LayerNorm(self.fc2_dims)
f3 = 0.003 # From paper
self.mu = nn.Linear(self.fc2_dims, self.n_actions)
T.nn.init.uniform_(self.mu.weight.data, -f3, f3)
T.nn.init.uniform_(self.mu.bias.data, -f3, f3)
T.nn.init.uniform_(self.mu.bias.data, -f3, f3)
self.optimizer = optim.Adam(self.parameters(), lr=alpha)
self.device = T.device("cpu")
self.to(self.device)
def forward(self, state):
x = self.fc1(state)
x = self.bn1(x)
x = F.relu(x)
x = self.fc2(x)
x = self.bn2(x)
x = F.relu(x)
x = T.tanh(self.mu(x))
return x
def save_checkpoint(self):
print('... saving checkpoint ...')
T.save(self.state_dict(), self.checkpoint_file)
def load_checkpoint(self):
print('... loading checkpoint ...')
self.load_state_dict(T.load(self.checkpoint_file))
class Agent(object):
def __init__(self, alpha, beta, input_dims, tau, env, gamma=0.99, n_actions=2, max_size=1000000, layer1_size=400, layer2_size=300, batch_size=64):
self.gamma = gamma
self.tau = tau
self.batch_size = batch_size
self.memory = ReplayBuffer(max_size, input_dims, n_actions)
self.actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="actor")
self.critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="critic")
self.target_actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="target_actor")
self.target_critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="target_critic")
self.noise = OUActionNoise(mu=np.zeros(n_actions))
self.attributions = []
self.ig : IntegratedGradients = None
self.update_network_parameters(tau=1)
def choose_action(self, observation, baseline: T.Tensor = None):
self.actor.eval()
observation = T.tensor(observation, dtype=T.float).to(self.actor.device)
# print(f"Observation: {observation.shape=}")
mu = self.actor(observation).to(self.actor.device)
if self.ig is not None:
attribution = self.ig.attribute(observation, baselines=baseline, n_steps=1)
self.attributions.append(attribution)
mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to(self.actor.device)
self.actor.train()
return mu_prime.cpu().detach().numpy()
def remember(self, state, action, reward, new_state, done):
self.memory.store_transition(state, action, reward, new_state, done)
def learn(self):
if self.memory.mem_cntr < self.batch_size:
return
state, action, reward, new_state, done = self.memory.sample_buffer(self.batch_size)
reward = T.tensor(reward, dtype=T.float).to(self.critic.device)
done = T.tensor(done).to(self.critic.device)
new_state = T.tensor(new_state, dtype=T.float).to(self.critic.device)
action = T.tensor(action, dtype=T.float).to(self.critic.device)
state = T.tensor(state, dtype=T.float).to(self.critic.device)
self.target_actor.eval()
self.target_critic.eval()
self.critic.eval()
target_actions = self.target_actor.forward(new_state)
critic_value_ = self.target_critic.forward(new_state, target_actions)
critic_value = self.critic.forward(state, action)
target = []
for j in range(self.batch_size):
target.append(reward[j] + self.gamma*critic_value_[j]*done[j])
target = T.tensor(target).to(self.critic.device)
target = target.view(self.batch_size, 1)
self.critic.train()
self.critic.optimizer.zero_grad()
critic_loss = F.mse_loss(target, critic_value)
critic_loss.backward()
self.critic.optimizer.step()
self.critic.eval()
self.actor.optimizer.zero_grad()
mu = self.actor.forward(state)
self.actor.train()
actor_loss = -self.critic.forward(state, mu)
actor_loss = T.mean(actor_loss)
actor_loss.backward()
self.actor.optimizer.step()
self.update_network_parameters()
def update_network_parameters(self, tau=None):
if tau is None:
tau = self.tau
actor_params = self.actor.named_parameters()
critic_params = self.critic.named_parameters()
target_actor_params = self.target_actor.named_parameters()
target_critic_params = self.target_critic.named_parameters()
critic_state_dict = dict(critic_params)
actor_state_dict = dict(actor_params)
target_critic_state_dict = dict(target_critic_params)
target_actor_state_dict = dict(target_actor_params)
for name in critic_state_dict:
critic_state_dict[name] = tau*critic_state_dict[name].clone() + (1-tau)*target_critic_state_dict[name].clone()
self.target_critic.load_state_dict(critic_state_dict)
for name in actor_state_dict:
actor_state_dict[name] = tau*actor_state_dict[name].clone() + (1-tau)*target_actor_state_dict[name].clone()
self.target_actor.load_state_dict(actor_state_dict)
def save_models(self):
self.actor.save_checkpoint()
self.target_actor.save_checkpoint()
self.critic.save_checkpoint()
self.target_critic.save_checkpoint()
def load_models(self):
self.actor.load_checkpoint()
self.target_actor.load_checkpoint()
self.critic.load_checkpoint()
self.target_critic.load_checkpoint()
|