Spaces:
Build error
Build error
fullstuckdev
commited on
Commit
·
93374aa
1
Parent(s):
f6b6cd4
fixing training
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ import torch
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
import logging
|
8 |
from typing import List, Optional
|
|
|
|
|
|
|
9 |
|
10 |
# Setup logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
@@ -31,6 +34,26 @@ class HealthResponse(BaseModel):
|
|
31 |
gpu_available: bool
|
32 |
device: str
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize FastAPI app
|
35 |
app = FastAPI(
|
36 |
title="Medical LLaMA API",
|
@@ -133,4 +156,166 @@ async def startup_event():
|
|
133 |
tokenizer, model = init_model()
|
134 |
logger.info("Model loaded successfully")
|
135 |
except Exception as e:
|
136 |
-
logger.error(f"Failed to load model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
import logging
|
8 |
from typing import List, Optional
|
9 |
+
from datasets import load_dataset
|
10 |
+
from transformers import TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
11 |
+
import json
|
12 |
|
13 |
# Setup logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
|
|
34 |
gpu_available: bool
|
35 |
device: str
|
36 |
|
37 |
+
class TrainRequest(BaseModel):
|
38 |
+
dataset_path: str
|
39 |
+
num_epochs: Optional[int] = 3
|
40 |
+
batch_size: Optional[int] = 4
|
41 |
+
learning_rate: Optional[float] = 2e-5
|
42 |
+
|
43 |
+
class TrainResponse(BaseModel):
|
44 |
+
status: str
|
45 |
+
message: str
|
46 |
+
|
47 |
+
# Add training status tracking
|
48 |
+
class TrainingStatus:
|
49 |
+
def __init__(self):
|
50 |
+
self.is_training = False
|
51 |
+
self.current_epoch = 0
|
52 |
+
self.current_loss = None
|
53 |
+
self.status = "idle"
|
54 |
+
|
55 |
+
training_status = TrainingStatus()
|
56 |
+
|
57 |
# Initialize FastAPI app
|
58 |
app = FastAPI(
|
59 |
title="Medical LLaMA API",
|
|
|
156 |
tokenizer, model = init_model()
|
157 |
logger.info("Model loaded successfully")
|
158 |
except Exception as e:
|
159 |
+
logger.error(f"Failed to load model: {str(e)}")
|
160 |
+
|
161 |
+
@app.post("/train", response_model=TrainResponse, tags=["Training"])
|
162 |
+
async def train_model(request: TrainRequest, background_tasks: BackgroundTasks):
|
163 |
+
"""
|
164 |
+
Start model training with the specified dataset
|
165 |
+
|
166 |
+
Parameters:
|
167 |
+
- dataset_path: Path to the JSON dataset file
|
168 |
+
- num_epochs: Number of training epochs
|
169 |
+
- batch_size: Training batch size
|
170 |
+
- learning_rate: Learning rate for training
|
171 |
+
"""
|
172 |
+
if training_status.is_training:
|
173 |
+
raise HTTPException(status_code=400, detail="Training is already in progress")
|
174 |
+
|
175 |
+
try:
|
176 |
+
# Verify dataset exists
|
177 |
+
if not os.path.exists(request.dataset_path):
|
178 |
+
raise HTTPException(status_code=404, detail="Dataset file not found")
|
179 |
+
|
180 |
+
# Start training in background
|
181 |
+
background_tasks.add_task(
|
182 |
+
run_training,
|
183 |
+
request.dataset_path,
|
184 |
+
request.num_epochs,
|
185 |
+
request.batch_size,
|
186 |
+
request.learning_rate
|
187 |
+
)
|
188 |
+
|
189 |
+
return TrainResponse(
|
190 |
+
status="started",
|
191 |
+
message="Training started in background"
|
192 |
+
)
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
logger.error(f"Training setup error: {str(e)}")
|
196 |
+
raise HTTPException(status_code=500, detail=str(e))
|
197 |
+
|
198 |
+
@app.get("/train/status", tags=["Training"])
|
199 |
+
async def get_training_status():
|
200 |
+
"""
|
201 |
+
Get current training status
|
202 |
+
"""
|
203 |
+
return {
|
204 |
+
"is_training": training_status.is_training,
|
205 |
+
"current_epoch": training_status.current_epoch,
|
206 |
+
"current_loss": training_status.current_loss,
|
207 |
+
"status": training_status.status
|
208 |
+
}
|
209 |
+
|
210 |
+
# Add training function
|
211 |
+
async def run_training(dataset_path: str, num_epochs: int, batch_size: int, learning_rate: float):
|
212 |
+
global model, tokenizer, training_status
|
213 |
+
|
214 |
+
try:
|
215 |
+
training_status.is_training = True
|
216 |
+
training_status.status = "loading_dataset"
|
217 |
+
|
218 |
+
# Load dataset
|
219 |
+
dataset = load_dataset("json", data_files=dataset_path)
|
220 |
+
|
221 |
+
training_status.status = "preprocessing"
|
222 |
+
|
223 |
+
# Preprocess function
|
224 |
+
def preprocess_function(examples):
|
225 |
+
return tokenizer(
|
226 |
+
examples["text"],
|
227 |
+
truncation=True,
|
228 |
+
padding="max_length",
|
229 |
+
max_length=512
|
230 |
+
)
|
231 |
+
|
232 |
+
# Tokenize dataset
|
233 |
+
tokenized_dataset = dataset.map(
|
234 |
+
preprocess_function,
|
235 |
+
batched=True,
|
236 |
+
remove_columns=dataset["train"].column_names
|
237 |
+
)
|
238 |
+
|
239 |
+
training_status.status = "training"
|
240 |
+
|
241 |
+
# Training arguments
|
242 |
+
training_args = TrainingArguments(
|
243 |
+
output_dir=f"{model_output_path}/checkpoints",
|
244 |
+
per_device_train_batch_size=batch_size,
|
245 |
+
gradient_accumulation_steps=4,
|
246 |
+
num_train_epochs=num_epochs,
|
247 |
+
learning_rate=learning_rate,
|
248 |
+
fp16=True,
|
249 |
+
save_steps=500,
|
250 |
+
logging_steps=100,
|
251 |
+
)
|
252 |
+
|
253 |
+
# Initialize trainer
|
254 |
+
trainer = Trainer(
|
255 |
+
model=model,
|
256 |
+
args=training_args,
|
257 |
+
train_dataset=tokenized_dataset["train"],
|
258 |
+
data_collator=DataCollatorForLanguageModeling(
|
259 |
+
tokenizer=tokenizer,
|
260 |
+
mlm=False
|
261 |
+
),
|
262 |
+
)
|
263 |
+
|
264 |
+
# Training callback to update status
|
265 |
+
class TrainingCallback(trainer.callback_handler):
|
266 |
+
def on_epoch_begin(self, args, state, control, **kwargs):
|
267 |
+
training_status.current_epoch = state.epoch
|
268 |
+
|
269 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
270 |
+
if logs:
|
271 |
+
training_status.current_loss = logs.get("loss", None)
|
272 |
+
|
273 |
+
trainer.add_callback(TrainingCallback)
|
274 |
+
|
275 |
+
# Start training
|
276 |
+
trainer.train()
|
277 |
+
|
278 |
+
# Save the model
|
279 |
+
training_status.status = "saving"
|
280 |
+
model.save_pretrained(model_output_path)
|
281 |
+
tokenizer.save_pretrained(model_output_path)
|
282 |
+
|
283 |
+
training_status.status = "completed"
|
284 |
+
logger.info("Training completed successfully")
|
285 |
+
|
286 |
+
except Exception as e:
|
287 |
+
training_status.status = f"failed: {str(e)}"
|
288 |
+
logger.error(f"Training error: {str(e)}")
|
289 |
+
raise
|
290 |
+
|
291 |
+
finally:
|
292 |
+
training_status.is_training = False
|
293 |
+
|
294 |
+
# Update model initialization
|
295 |
+
def init_model():
|
296 |
+
try:
|
297 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
298 |
+
logger.info(f"Loading model on device: {device}")
|
299 |
+
|
300 |
+
# Try to load fine-tuned model if it exists
|
301 |
+
if os.path.exists(model_output_path):
|
302 |
+
tokenizer = AutoTokenizer.from_pretrained(model_output_path)
|
303 |
+
model = AutoModelForCausalLM.from_pretrained(
|
304 |
+
model_output_path,
|
305 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
306 |
+
device_map="auto"
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
# Load base model if no fine-tuned model exists
|
310 |
+
model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4"
|
311 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
312 |
+
model = AutoModelForCausalLM.from_pretrained(
|
313 |
+
model_name,
|
314 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
315 |
+
device_map="auto"
|
316 |
+
)
|
317 |
+
|
318 |
+
return tokenizer, model
|
319 |
+
except Exception as e:
|
320 |
+
logger.error(f"Model initialization error: {str(e)}")
|
321 |
+
raise
|