Spaces:
Build error
Build error
from datasets import load_dataset | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling | |
) | |
import torch | |
import os | |
model_output_path = "./model/medical_llama_3b" | |
os.makedirs(model_output_path, exist_ok=True) | |
model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
dataset = load_dataset("json", data_files="medical_dataset.json") | |
def preprocess_function(examples): | |
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512) | |
tokenized_dataset = dataset.map( | |
preprocess_function, | |
batched=True, | |
remove_columns=dataset["train"].column_names | |
) | |
training_args = TrainingArguments( | |
output_dir="./model/medical_llama_3b/checkpoints", | |
per_device_train_batch_size=4, | |
gradient_accumulation_steps=4, | |
num_train_epochs=3, | |
learning_rate=2e-5, | |
fp16=True, | |
save_steps=500, | |
logging_steps=100, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train"], | |
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False), | |
) | |
trainer.train() | |
model.save_pretrained(model_output_path) | |
tokenizer.save_pretrained(model_output_path) | |
print(f"Model and tokenizer saved to: {model_output_path}") |