Spaces:
Build error
Build error
File size: 1,448 Bytes
8c2f469 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from datasets import load_dataset
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
import torch
import os
model_output_path = "./model/medical_llama_3b"
os.makedirs(model_output_path, exist_ok=True)
model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
dataset = load_dataset("json", data_files="medical_dataset.json")
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_dataset = dataset.map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names
)
training_args = TrainingArguments(
output_dir="./model/medical_llama_3b/checkpoints",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
num_train_epochs=3,
learning_rate=2e-5,
fp16=True,
save_steps=500,
logging_steps=100,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
)
trainer.train()
model.save_pretrained(model_output_path)
tokenizer.save_pretrained(model_output_path)
print(f"Model and tokenizer saved to: {model_output_path}") |