Spaces:
Running
Running
Commit
·
d33e5d1
1
Parent(s):
d5e3b18
Use vit
Browse files
app.py
CHANGED
@@ -6,17 +6,17 @@ torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/0000000397
|
|
6 |
torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
|
7 |
torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
|
8 |
|
9 |
-
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
10 |
-
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
11 |
|
12 |
-
git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
13 |
-
git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
14 |
|
15 |
-
blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
16 |
-
blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
17 |
|
18 |
-
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
19 |
-
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
20 |
|
21 |
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
22 |
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
@@ -24,10 +24,10 @@ vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-capt
|
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
-
git_model_base.to(device)
|
28 |
-
blip_model_base.to(device)
|
29 |
-
git_model_large.to(device)
|
30 |
-
blip_model_large.to(device)
|
31 |
vitgpt_model.to(device)
|
32 |
|
33 |
def generate_caption(processor, model, image, tokenizer=None):
|
@@ -44,21 +44,21 @@ def generate_caption(processor, model, image, tokenizer=None):
|
|
44 |
|
45 |
|
46 |
def generate_captions(image):
|
47 |
-
caption_git_base = generate_caption(git_processor_base, git_model_base, image)
|
48 |
|
49 |
-
caption_git_large = generate_caption(git_processor_large, git_model_large, image)
|
50 |
|
51 |
-
caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
|
52 |
|
53 |
-
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
54 |
|
55 |
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
56 |
|
57 |
-
return
|
58 |
|
59 |
|
60 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
61 |
-
outputs = [gr.outputs.Textbox(label="Caption generated by
|
62 |
|
63 |
title = "Interactive demo: comparing image captioning models"
|
64 |
description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|
|
|
6 |
torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
|
7 |
torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
|
8 |
|
9 |
+
# git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
10 |
+
# git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
11 |
|
12 |
+
# git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
13 |
+
# git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
14 |
|
15 |
+
# blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
16 |
+
# blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
17 |
|
18 |
+
# blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
19 |
+
# blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
20 |
|
21 |
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
22 |
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
+
# git_model_base.to(device)
|
28 |
+
# blip_model_base.to(device)
|
29 |
+
# git_model_large.to(device)
|
30 |
+
# blip_model_large.to(device)
|
31 |
vitgpt_model.to(device)
|
32 |
|
33 |
def generate_caption(processor, model, image, tokenizer=None):
|
|
|
44 |
|
45 |
|
46 |
def generate_captions(image):
|
47 |
+
# caption_git_base = generate_caption(git_processor_base, git_model_base, image)
|
48 |
|
49 |
+
# caption_git_large = generate_caption(git_processor_large, git_model_large, image)
|
50 |
|
51 |
+
# caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
|
52 |
|
53 |
+
# caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
54 |
|
55 |
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
56 |
|
57 |
+
return caption_vitgpt
|
58 |
|
59 |
|
60 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
61 |
+
outputs = [gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")]
|
62 |
|
63 |
title = "Interactive demo: comparing image captioning models"
|
64 |
description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|