Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
from timm.models.registry import register_model | |
from timm.models.vision_transformer import _cfg | |
import math | |
from torch.distributions.uniform import Uniform | |
import numpy as np | |
import random | |
__all__ = [ | |
'pvt_tiny', 'pvt_small', 'pvt_medium', 'pvt_large' | |
] | |
class SELayer(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super(SELayer, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction, bias=False), | |
nn.ReLU(inplace=True), | |
nn.Linear(channel // reduction, channel, bias=False), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return x * y.expand_as(x) | |
class Regression(nn.Module): | |
def __init__(self): | |
super(Regression, self).__init__() | |
self.v1 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), | |
nn.Conv2d(256, 128, 3, padding=1, dilation=1), | |
nn.BatchNorm2d(128), nn.ReLU(inplace=True)) | |
self.v2 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), | |
nn.Conv2d(512, 256, 3, padding=1, dilation=1), | |
nn.BatchNorm2d(256), nn.ReLU(inplace=True)) | |
self.v3 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), | |
nn.Conv2d(1024, 512, 3, padding=1, dilation=1), nn.BatchNorm2d(512), | |
nn.ReLU(inplace=True)) | |
self.ca2 = nn.Sequential(ChannelAttention(512), | |
nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1 ), | |
nn.BatchNorm2d(512), nn.ReLU(inplace=True)) | |
self.ca1 = nn.Sequential(ChannelAttention(256), | |
nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1 ), | |
nn.BatchNorm2d(256), nn.ReLU(inplace=True)) | |
self.ca0 = nn.Sequential(ChannelAttention(128), | |
nn.Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 1 ), | |
nn.BatchNorm2d(128), nn.ReLU(inplace=True)) | |
self.res2 = nn.Sequential( | |
nn.Conv2d(512, 256, 3, padding=1, dilation=1), nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 128, 3, padding=1, dilation=1), nn.BatchNorm2d(128), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(128, 1, 3, padding=1, dilation=1), | |
nn.ReLU(inplace=True)) | |
self.res1 = nn.Sequential( | |
nn.Conv2d(256, 128, 3, padding=1, dilation=1), nn.BatchNorm2d(128), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(128, 64, 3, padding=1, dilation=1), nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 1, 3, padding=1, dilation=1), | |
nn.ReLU(inplace=True)) | |
self.res0 = nn.Sequential( | |
nn.Conv2d(128, 64, 3, padding=1, dilation=1), nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 1, 3, padding=1, dilation=1), | |
nn.ReLU(inplace=True)) | |
self.noise2 = DropOutDecoder(1, 512, 512) | |
self.noise1 = FeatureDropDecoder(1, 256, 256) | |
self.noise0 = FeatureNoiseDecoder(1, 128, 128) | |
self.upsam2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
self.upsam4 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True) | |
self.conv1 = nn.Conv2d(1024, 512, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv2d(512, 256, kernel_size=1, bias=False) | |
self.conv3 = nn.Conv2d(256, 128, kernel_size=1, bias=False) | |
self.conv4 = nn.Conv2d(128, 1, kernel_size=1, bias=False) | |
#cls2.view(8, 1024, 1, 1)) | |
self.init_param() | |
def forward(self, x, cls): | |
x0 = x[0]; x1 = x[1]; x2 = x[2]; x3 = x[3] | |
cls0 = cls[0].view(cls[0].shape[0], cls[0].shape[1], 1, 1) | |
cls1 = cls[1].view(cls[1].shape[0], cls[1].shape[1], 1, 1) | |
cls2 = cls[2].view(cls[2].shape[0], cls[2].shape[1], 1, 1) | |
x2_1 = self.ca2(x2)+self.v3(x3) | |
x1_1 = self.ca1(x1)+self.v2(x2_1) | |
x0_1 = self.ca0(x0)+self.v1(x1_1) | |
if self.training: | |
yc2 = self.conv4(self.conv3(self.conv2(self.noise2(self.conv1(cls2))))).squeeze() | |
yc1 = self.conv4(self.conv3(self.noise1(self.conv2(cls1)))).squeeze() | |
yc0 = self.conv4(self.noise0(self.conv3(cls0))).squeeze() | |
y2 = self.res2(self.upsam4(self.noise2(x2_1))) | |
y1 = self.res1(self.upsam2(self.noise1(x1_1))) | |
y0 = self.res0(self.noise0(x0_1)) | |
else: | |
yc2 = self.conv4(self.conv3(self.conv2(self.conv1(cls2)))).squeeze() | |
yc1 = self.conv4(self.conv3(self.conv2(cls1))).squeeze() | |
yc0 = self.conv4(self.conv3(cls0)).squeeze() | |
y2 = self.res2(self.upsam4(x2_1)) | |
y1 = self.res1(self.upsam2(x1_1)) | |
y0 = self.res0(x0_1) | |
return [y0, y1, y2], [yc0, yc1, yc2] | |
def init_param(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight, std=0.01) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def upsample(in_channels, out_channels, upscale, kernel_size=3): | |
# A series of x 2 upsamling until we get to the upscale we want | |
layers = [] | |
conv1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) | |
nn.init.kaiming_normal_(conv1x1.weight.data, nonlinearity='relu') | |
layers.append(conv1x1) | |
for i in range(int(math.log(upscale, 2))): | |
layers.append(PixelShuffle(out_channels, scale=2)) | |
return nn.Sequential(*layers) | |
class FeatureDropDecoder(nn.Module): | |
def __init__(self, upscale, conv_in_ch, num_classes): | |
super(FeatureDropDecoder, self).__init__() | |
self.upsample = upsample(conv_in_ch, num_classes, upscale=upscale) | |
def feature_dropout(self, x): | |
attention = torch.mean(x, dim=1, keepdim=True) | |
max_val, _ = torch.max(attention.view(x.size(0), -1), dim=1, keepdim=True) | |
threshold = max_val * np.random.uniform(0.7, 0.9) | |
threshold = threshold.view(x.size(0), 1, 1, 1).expand_as(attention) | |
drop_mask = (attention < threshold).float() | |
return x.mul(drop_mask) | |
def forward(self, x): | |
x = self.feature_dropout(x) | |
return x | |
class FeatureNoiseDecoder(nn.Module): | |
def __init__(self, upscale, conv_in_ch, num_classes, uniform_range=0.3): | |
super(FeatureNoiseDecoder, self).__init__() | |
self.upsample = upsample(conv_in_ch, num_classes, upscale=upscale) | |
self.uni_dist = Uniform(-uniform_range, uniform_range) | |
def feature_based_noise(self, x): | |
noise_vector = self.uni_dist.sample(x.shape[1:]).to(x.device).unsqueeze(0) | |
x_noise = x.mul(noise_vector) + x | |
return x_noise | |
def forward(self, x): | |
x = self.feature_based_noise(x) | |
return x | |
class DropOutDecoder(nn.Module): | |
def __init__(self, upscale, conv_in_ch, num_classes, drop_rate=0.3, spatial_dropout=True): | |
super(DropOutDecoder, self).__init__() | |
self.dropout = nn.Dropout2d(p=drop_rate) if spatial_dropout else nn.Dropout(drop_rate) | |
self.upsample = upsample(conv_in_ch, num_classes, upscale=upscale) | |
def forward(self, x): | |
x = self.dropout(x) | |
return x | |
## ChannelAttetion | |
class ChannelAttention(nn.Module): | |
def __init__(self, in_planes, ratio=16): | |
super(ChannelAttention, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(in_planes,in_planes // ratio, bias = False), | |
nn.ReLU(inplace = True), | |
nn.Linear(in_planes // ratio, in_planes, bias = False) | |
) | |
self.sigmoid = nn.Sigmoid() | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
def forward(self, in_feature): | |
x = in_feature | |
b, c, _, _ = in_feature.size() | |
avg_out = self.fc(self.avg_pool(x).view(b,c)).view(b, c, 1, 1) | |
out = avg_out | |
return self.sigmoid(out).expand_as(in_feature) * in_feature | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): | |
super().__init__() | |
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.sr_ratio = sr_ratio | |
if sr_ratio > 1: | |
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
self.norm = nn.LayerNorm(dim) | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
if self.sr_ratio > 4: | |
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) | |
x_ = self.norm(x_) | |
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
else: | |
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
k, v = kv[0], kv[1] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, H, W): | |
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
# assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ | |
# f"img_size {img_size} should be divided by patch_size {patch_size}." | |
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
self.num_patches = self.H * self.W | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
self.norm = nn.LayerNorm(embed_dim) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
H, W = H // self.patch_size[0], W // self.patch_size[1] | |
return x, (H, W) | |
class PyramidVisionTransformer(nn.Module): | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], | |
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., | |
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, | |
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], num_stages=4): | |
super().__init__() | |
self.num_classes = num_classes | |
self.depths = depths | |
self.num_stages = num_stages | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
cur = 0 | |
for i in range(num_stages): | |
patch_embed = PatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)), | |
patch_size=patch_size if i == 0 else 2, | |
in_chans=in_chans if i == 0 else embed_dims[i - 1], | |
embed_dim=embed_dims[i]) | |
num_patches = patch_embed.num_patches if i == 0 else patch_embed.num_patches + 1 | |
pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dims[i])) | |
pos_drop = nn.Dropout(p=drop_rate) | |
block = nn.ModuleList([Block( | |
dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, | |
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], | |
norm_layer=norm_layer, sr_ratio=sr_ratios[i]) | |
for j in range(depths[i])]) | |
cur += depths[i] | |
setattr(self, f"patch_embed{i + 1}", patch_embed) | |
setattr(self, f"pos_embed{i + 1}", pos_embed) | |
setattr(self, f"pos_drop{i + 1}", pos_drop) | |
setattr(self, f"block{i + 1}", block) | |
self.norm = norm_layer(embed_dims[3]) | |
# cls_token | |
self.cls_token_1 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) | |
self.cls_token_2 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) | |
self.cls_token_3 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) | |
# classification head | |
self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() | |
self.regression = Regression() | |
# init weights | |
for i in range(num_stages): | |
pos_embed = getattr(self, f"pos_embed{i + 1}") | |
trunc_normal_(pos_embed, std=.02) | |
trunc_normal_(self.cls_token_1, std=.02) | |
trunc_normal_(self.cls_token_2, std=.02) | |
trunc_normal_(self.cls_token_3, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
# return {'pos_embed', 'cls_token'} # has pos_embed may be better | |
return {'cls_token'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def _get_pos_embed(self, pos_embed, patch_embed, H, W): | |
if H * W == self.patch_embed1.num_patches: | |
return pos_embed | |
else: | |
return F.interpolate( | |
pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2), | |
size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1) | |
def forward_features(self, x): | |
B = x.shape[0] | |
outputs = list() | |
cls_output = list() | |
for i in range(self.num_stages): | |
patch_embed = getattr(self, f"patch_embed{i + 1}") | |
pos_embed = getattr(self, f"pos_embed{i + 1}") | |
pos_drop = getattr(self, f"pos_drop{i + 1}") | |
block = getattr(self, f"block{i + 1}") | |
x, (H, W) = patch_embed(x) | |
if i == 0: | |
pos_embed = self._get_pos_embed(pos_embed, patch_embed, H, W) | |
elif i == 1: | |
cls_tokens = self.cls_token_1.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
pos_embed_ = self._get_pos_embed(pos_embed[:, 1:], patch_embed, H, W) | |
pos_embed = torch.cat((pos_embed[:, 0:1], pos_embed_), dim=1) | |
elif i == 2: | |
cls_tokens = self.cls_token_2.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
pos_embed_ = self._get_pos_embed(pos_embed[:, 1:], patch_embed, H, W) | |
pos_embed = torch.cat((pos_embed[:, 0:1], pos_embed_), dim=1) | |
elif i == 3: | |
cls_tokens = self.cls_token_3.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
pos_embed_ = self._get_pos_embed(pos_embed[:, 1:], patch_embed, H, W) | |
pos_embed = torch.cat((pos_embed[:, 0:1], pos_embed_), dim=1) | |
x = pos_drop(x + pos_embed) | |
for blk in block: | |
x = blk(x, H, W) | |
if i == 0: | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
else: | |
x_cls = x[:,1,:] | |
x = x[:,1:,:].reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
cls_output.append(x_cls) | |
outputs.append(x) | |
return outputs, cls_output | |
def forward(self, label_x, unlabel_x=None): | |
if self.training: | |
# labeled image processing | |
label_x, l_cls = self.forward_features(label_x) | |
out_label_x, out_cls_l = self.regression(label_x, l_cls) | |
label_x_1, label_x_2, label_x_3 = out_label_x | |
B,C,H,W = label_x_1.size() | |
label_sum = label_x_1.view([B, -1]).sum(1).unsqueeze(1).unsqueeze(2).unsqueeze(3) | |
label_normed = label_x_1 / (label_sum + 1e-6) | |
# unlabeled image processing | |
B,C,H,W = unlabel_x.shape | |
unlabel_x, ul_cls = self.forward_features(unlabel_x) | |
out_unlabel_x, out_cls_ul = self.regression(unlabel_x, ul_cls) | |
y0, y1, y2 = out_unlabel_x | |
unlabel_x_1 = self.generate_feature_patches(y0) | |
unlabel_x_2 = self.generate_feature_patches(y1) | |
unlabel_x_3 = self.generate_feature_patches(y2) | |
assert unlabel_x_1.shape[0] == B * 5 | |
assert unlabel_x_2.shape[0] == B * 5 | |
assert unlabel_x_3.shape[0] == B * 5 | |
unlabel_x_1 = torch.split(unlabel_x_1, split_size_or_sections=B, dim=0) | |
unlabel_x_2 = torch.split(unlabel_x_2, split_size_or_sections=B, dim=0) | |
unlabel_x_3 = torch.split(unlabel_x_3, split_size_or_sections=B, dim=0) | |
return [label_x_1, label_x_2, label_x_3], [unlabel_x_1, unlabel_x_2, unlabel_x_3], label_normed, out_cls_l, out_cls_ul | |
else: | |
label_x, l_cls = self.forward_features(label_x) | |
out_label_x, out_cls_l = self.regression(label_x, l_cls) | |
label_x_1, label_x_2, label_x_3 = out_label_x | |
B,C,H,W = label_x_1.size() | |
label_sum = label_x_1.view([B, -1]).sum(1).unsqueeze(1).unsqueeze(2).unsqueeze(3) | |
label_normed = label_x_1 / (label_sum + 1e-6) | |
return [label_x_1, label_x_2, label_x_3], label_normed | |
def generate_feature_patches(self, unlabel_x, ratio=0.75): | |
# unlabeled image processing | |
unlabel_x_1 = unlabel_x | |
b, c, h, w = unlabel_x.shape | |
center_x = random.randint(h // 2 - (h - h * ratio) // 2, h // 2 + (h - h * ratio) // 2) | |
center_y = random.randint(w // 2 - (w - w * ratio) // 2, w // 2 + (w - w * ratio) // 2) | |
new_h2 = int(h * ratio) | |
new_w2 = int(w * ratio) # 48*48 | |
unlabel_x_2 = unlabel_x[:, :, center_x - new_h2 // 2:center_x + new_h2 // 2, | |
center_y - new_w2 // 2:center_y + new_w2 // 2] | |
new_h3 = int(new_h2 * ratio) | |
new_w3 = int(new_w2 * ratio) | |
unlabel_x_3 = unlabel_x[:, :, center_x - new_h3 // 2:center_x + new_h3 // 2, | |
center_y - new_w3 // 2:center_y + new_w3 // 2] | |
new_h4 = int(new_h3 * ratio) | |
new_w4 = int(new_w3 * ratio) | |
unlabel_x_4 = unlabel_x[:, :, center_x - new_h4 // 2:center_x + new_h4 // 2, | |
center_y - new_w4 // 2:center_y + new_w4 // 2] | |
new_h5 = int(new_h4 * ratio) | |
new_w5 = int(new_w4 * ratio) | |
unlabel_x_5 = unlabel_x[:, :, center_x - new_h5 // 2:center_x + new_h5 // 2, | |
center_y - new_w5 // 2:center_y + new_w5 // 2] | |
unlabel_x_2 = nn.functional.interpolate(unlabel_x_2, size=(h, w), mode='bilinear') | |
unlabel_x_3 = nn.functional.interpolate(unlabel_x_3, size=(h, w), mode='bilinear') | |
unlabel_x_4 = nn.functional.interpolate(unlabel_x_4, size=(h, w), mode='bilinear') | |
unlabel_x_5 = nn.functional.interpolate(unlabel_x_5, size=(h, w), mode='bilinear') | |
unlabel_x = torch.cat([unlabel_x_1, unlabel_x_2, unlabel_x_3, unlabel_x_4, unlabel_x_5], dim=0) | |
return unlabel_x | |
def _conv_filter(state_dict, patch_size=16): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k: | |
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
out_dict[k] = v | |
return out_dict | |
def pvt_tiny(pretrained=False, **kwargs): | |
model = PyramidVisionTransformer( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def pvt_small(pretrained=False, **kwargs): | |
model = PyramidVisionTransformer( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def pvt_medium(pretrained=False, **kwargs): | |
model = PyramidVisionTransformer( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def pvt_large(pretrained=False, **kwargs): | |
model = PyramidVisionTransformer( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def pvt_treeformer(pretrained=False, **kwargs): | |
model = PyramidVisionTransformer( | |
patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model |