Spaces:
Paused
Paused
File size: 16,776 Bytes
c964d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import time
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import numpy as np
from datetime import datetime
import torch.nn.functional as F
from datasets.crowd import Crowd_TC, Crowd_UL_TC
from network import pvt_cls as TCN
from losses.multi_con_loss import MultiConLoss
from utils.pytorch_utils import Save_Handle, AverageMeter
import utils.log_utils as log_utils
import argparse
from losses.rank_loss import RankLoss
from losses import ramps
from losses.ot_loss import OT_Loss
from losses.consistency_loss import *
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('--data-dir', default='/users/k2254235/Lab/TCT/Dataset/London_103050/', help='data path')
parser.add_argument('--dataset', default='TC')
parser.add_argument('--lr', type=float, default=1e-5, help='the initial learning rate')
parser.add_argument('--weight-decay', type=float, default=1e-4, help='the weight decay')
parser.add_argument('--resume', default='', type=str, help='the path of resume training model')
parser.add_argument('--max-epoch', type=int, default=4000, help='max training epoch')
parser.add_argument('--val-epoch', type=int, default=1, help='the num of steps to log training information')
parser.add_argument('--val-start', type=int, default=0, help='the epoch start to val')
parser.add_argument('--batch-size', type=int, default=16, help='train batch size')
parser.add_argument('--batch-size-ul', type=int, default=16, help='train batch size')
parser.add_argument('--device', default='0', help='assign device')
parser.add_argument('--num-workers', type=int, default=0, help='the num of training process')
parser.add_argument('--crop-size', type=int, default= 256, help='the crop size of the train image')
parser.add_argument('--rl', type=float, default=1, help='entropy regularization in sinkhorn')
parser.add_argument('--reg', type=float, default=1, help='entropy regularization in sinkhorn')
parser.add_argument('--ot', type=float, default=0.1, help='entropy regularization in sinkhorn')
parser.add_argument('--tv', type=float, default=0.01, help='entropy regularization in sinkhorn')
parser.add_argument('--num-of-iter-in-ot', type=int, default=100, help='sinkhorn iterations')
parser.add_argument('--norm-cood', type=int, default=0, help='whether to norm cood when computing distance')
parser.add_argument('--run-name', default='Treeformer_test', help='run name for wandb interface/logging')
parser.add_argument('--consistency', type=int, default=1, help='whether to norm cood when computing distance')
args = parser.parse_args()
def train_collate(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
gauss = torch.stack(transposed_batch[1], 0)
points = transposed_batch[2]
gt_discretes = torch.stack(transposed_batch[3], 0)
return images, gauss, points, gt_discretes
def train_collate_UL(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
return images
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_ramp)
class Trainer(object):
def __init__(self, args):
self.args = args
def setup(self):
args = self.args
sub_dir = (
"SEMI/{}_12-1-input-{}_reg-{}_nIter-{}_normCood-{}".format(
args.run_name,args.crop_size,args.reg,
args.num_of_iter_in_ot,args.norm_cood))
self.save_dir = os.path.join("/scratch/users/k2254235","ckpts", sub_dir)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
time_str = datetime.strftime(datetime.now(), "%m%d-%H%M%S")
self.logger = log_utils.get_logger(
os.path.join(self.save_dir, "train-{:s}.log".format(time_str)))
log_utils.print_config(vars(args), self.logger)
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.device_count = torch.cuda.device_count()
self.logger.info("using {} gpus".format(self.device_count))
else:
raise Exception("gpu is not available")
downsample_ratio = 4
self.datasets = {"train": Crowd_TC(os.path.join(args.data_dir, "train_data"), args.crop_size,
downsample_ratio, "train"), "val": Crowd_TC(os.path.join(args.data_dir, "valid_data"),
args.crop_size, downsample_ratio, "val")}
self.datasets_ul = { "train_ul": Crowd_UL_TC(os.path.join(args.data_dir, "train_data_ul"),
args.crop_size, downsample_ratio, "train_ul")}
self.dataloaders = {
x: DataLoader(self.datasets[x],
collate_fn=(train_collate if x == "train" else default_collate),
batch_size=(args.batch_size if x == "train" else 1),
shuffle=(True if x == "train" else False),
num_workers=args.num_workers * self.device_count,
pin_memory=(True if x == "train" else False))
for x in ["train", "val"]}
self.dataloaders_ul = {
x: DataLoader(self.datasets_ul[x],
collate_fn=(train_collate_UL ),
batch_size=(args.batch_size_ul),
shuffle=(True),
num_workers=args.num_workers * self.device_count,
pin_memory=(True if x == "train" else False))
for x in ["train_ul"]}
self.model = TCN.pvt_treeformer(pretrained=False)
self.model.to(self.device)
self.optimizer = optim.AdamW(self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
self.start_epoch = 0
if args.resume:
self.logger.info("loading pretrained model from " + args.resume)
suf = args.resume.rsplit(".", 1)[-1]
if suf == "tar":
checkpoint = torch.load(args.resume, self.device)
self.model.load_state_dict(checkpoint["model_state_dict"])
self.optimizer.load_state_dict(
checkpoint["optimizer_state_dict"])
self.start_epoch = checkpoint["epoch"] + 1
elif suf == "pth":
self.model.load_state_dict(
torch.load(args.resume, self.device))
else:
self.logger.info("random initialization")
self.ot_loss = OT_Loss(args.crop_size, downsample_ratio, args.norm_cood,
self.device, args.num_of_iter_in_ot, args.reg)
self.tvloss = nn.L1Loss(reduction="none").to(self.device)
self.mse = nn.MSELoss().to(self.device)
self.mae = nn.L1Loss().to(self.device)
self.save_list = Save_Handle(max_num=1)
self.best_mae = np.inf
self.best_mse = np.inf
self.rankloss = RankLoss().to(self.device)
self.kl_distance = nn.KLDivLoss(reduction='none')
self.multiconloss = MultiConLoss().to(self.device)
def train(self):
"""training process"""
args = self.args
for epoch in range(self.start_epoch, args.max_epoch + 1):
self.logger.info("-" * 5 + "Epoch {}/{}".format(epoch, args.max_epoch) + "-" * 5)
self.epoch = epoch
self.train_epoch()
if epoch % args.val_epoch == 0 and epoch >= args.val_start:
self.val_epoch()
def train_epoch(self):
epoch_ot_loss = AverageMeter()
epoch_ot_obj_value = AverageMeter()
epoch_wd = AverageMeter()
epoch_tv_loss = AverageMeter()
epoch_count_loss = AverageMeter()
epoch_count_consistency_l = AverageMeter()
epoch_count_consistency_ul = AverageMeter()
epoch_loss = AverageMeter()
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
epoch_start = time.time()
epoch_rank_loss = AverageMeter()
epoch_consistensy_loss = AverageMeter()
self.model.train() # Set model to training mode
for step, (inputs, gausss, points, gt_discrete) in enumerate(self.dataloaders["train"]):
inputs = inputs.to(self.device)
gausss = gausss.to(self.device)
gd_count = np.array([len(p) for p in points], dtype=np.float32)
points = [p.to(self.device) for p in points]
gt_discrete = gt_discrete.to(self.device)
N = inputs.size(0)
for st, unlabel_data in enumerate(self.dataloaders_ul["train_ul"]):
inputs_ul = unlabel_data.to(self.device)
break
with torch.set_grad_enabled(True):
outputs_L, outputs_UL, outputs_normed, CLS_L, CLS_UL = self.model(inputs, inputs_ul)
outputs_L = outputs_L[0]
with torch.set_grad_enabled(False):
preds_UL = (outputs_UL[0][0] + outputs_UL[1][0] + outputs_UL[2][0])/3
# Compute counting loss.
count_loss = self.mae(outputs_L.sum(1).sum(1).sum(1),torch.from_numpy(gd_count).float().to(self.device))*self.args.reg
# Compute OT loss.
ot_loss, wd, ot_obj_value = self.ot_loss(outputs_normed, outputs_L, points)
ot_loss = ot_loss* self.args.ot
ot_obj_value = ot_obj_value* self.args.ot
gd_count_tensor = (torch.from_numpy(gd_count).float().to(self.device).unsqueeze(1).unsqueeze(2).unsqueeze(3))
gt_discrete_normed = gt_discrete / (gd_count_tensor + 1e-6)
tv_loss = (self.tvloss(outputs_normed, gt_discrete_normed).sum(1).sum(1).sum(1)*
torch.from_numpy(gd_count).float().to(self.device)).mean(0) * self.args.tv
epoch_ot_loss.update(ot_loss.item(), N)
epoch_ot_obj_value.update(ot_obj_value.item(), N)
epoch_wd.update(wd, N)
epoch_count_loss.update(count_loss.item(), N)
epoch_tv_loss.update(tv_loss.item(), N)
# Compute ranking loss.
rank_loss = self.rankloss(outputs_UL)*self.args.rl
epoch_rank_loss.update(rank_loss.item(), N)
# Compute multi level consistancy loss
consistency_loss = args.consistency * self.multiconloss(outputs_UL)
epoch_consistensy_loss.update(consistency_loss.item(), N)
# Compute consistency count
Con_cls_UL = (CLS_UL[0] + CLS_UL[1] + CLS_UL[2])/3
Con_cls_L = torch.from_numpy(gd_count).float().to(self.device)
count_loss_l = self.mae(torch.stack((CLS_L[0],CLS_L[1],CLS_L[2])), torch.stack((Con_cls_L, Con_cls_L, Con_cls_L)))
count_loss_ul = self.mae(torch.stack((CLS_UL[0],CLS_UL[1],CLS_UL[2])), torch.stack((Con_cls_UL, Con_cls_UL, Con_cls_UL)))
epoch_count_consistency_l.update(count_loss_l.item(), N)
epoch_count_consistency_ul.update(count_loss_ul.item(), N)
loss = count_loss + ot_loss + tv_loss + rank_loss + count_loss_l + count_loss_ul + consistency_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
pred_count = (torch.sum(outputs_L.view(N, -1),
dim=1).detach().cpu().numpy())
pred_err = pred_count - gd_count
epoch_loss.update(loss.item(), N)
epoch_mse.update(np.mean(pred_err * pred_err), N)
epoch_mae.update(np.mean(abs(pred_err)), N)
self.logger.info(
"Epoch {} Train, Loss: {:.2f}, Count Loss: {:.2f}, OT Loss: {:.2e}, TV Loss: {:.2e}, Rank Loss: {:.2f},"
"Consistensy Loss: {:.2f}, MSE: {:.2f}, MAE: {:.2f},LC Loss: {:.2f}, ULC Loss: {:.2f}, Cost {:.1f} sec".format(
self.epoch, epoch_loss.get_avg(), epoch_count_loss.get_avg(), epoch_ot_loss.get_avg(), epoch_tv_loss.get_avg(), epoch_rank_loss.get_avg(),
epoch_consistensy_loss.get_avg(), np.sqrt(epoch_mse.get_avg()), epoch_mae.get_avg(), epoch_count_consistency_l.get_avg(),
epoch_count_consistency_ul.get_avg(), time.time() - epoch_start))
model_state_dic = self.model.state_dict()
save_path = os.path.join(self.save_dir, "{}_ckpt.tar".format(self.epoch))
torch.save({"epoch": self.epoch, "optimizer_state_dict": self.optimizer.state_dict(),
"model_state_dict": model_state_dic}, save_path)
self.save_list.append(save_path)
def val_epoch(self):
args = self.args
epoch_start = time.time()
self.model.eval() # Set model to evaluate mode
epoch_res = []
for inputs, count, name, gauss_im in self.dataloaders["val"]:
with torch.no_grad():
inputs = inputs.to(self.device)
crop_imgs, crop_masks = [], []
b, c, h, w = inputs.size()
rh, rw = args.crop_size, args.crop_size
for i in range(0, h, rh):
gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
for j in range(0, w, rw):
gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
crop_imgs.append(inputs[:, :, gis:gie, gjs:gje])
mask = torch.zeros([b, 1, h, w]).to(self.device)
mask[:, :, gis:gie, gjs:gje].fill_(1.0)
crop_masks.append(mask)
crop_imgs, crop_masks = map(
lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks))
crop_preds = []
nz, bz = crop_imgs.size(0), args.batch_size
for i in range(0, nz, bz):
gs, gt = i, min(nz, i + bz)
crop_pred, _ = self.model(crop_imgs[gs:gt])
crop_pred = crop_pred[0]
_, _, h1, w1 = crop_pred.size()
crop_pred = (F.interpolate(crop_pred, size=(h1 * 4, w1 * 4),
mode="bilinear", align_corners=True) / 16 )
crop_preds.append(crop_pred)
crop_preds = torch.cat(crop_preds, dim=0)
# splice them to the original size
idx = 0
pred_map = torch.zeros([b, 1, h, w]).to(self.device)
for i in range(0, h, rh):
gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
for j in range(0, w, rw):
gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
idx += 1
# for the overlapping area, compute average value
mask = crop_masks.sum(dim=0).unsqueeze(0)
outputs = pred_map / mask
res = count[0].item() - torch.sum(outputs).item()
epoch_res.append(res)
epoch_res = np.array(epoch_res)
mse = np.sqrt(np.mean(np.square(epoch_res)))
mae = np.mean(np.abs(epoch_res))
self.logger.info("Epoch {} Val, MSE: {:.2f}, MAE: {:.2f}, Cost {:.1f} sec".format(
self.epoch, mse, mae, time.time() - epoch_start ))
model_state_dic = self.model.state_dict()
print("Comaprison", mae, self.best_mae)
if mae < self.best_mae:
self.best_mse = mse
self.best_mae = mae
self.logger.info(
"save best mse {:.2f} mae {:.2f} model epoch {}".format(
self.best_mse, self.best_mae, self.epoch))
print("Saving best model at {} epoch".format(self.epoch))
model_path = os.path.join(
self.save_dir, "best_model_mae-{:.2f}_epoch-{}.pth".format(
self.best_mae, self.epoch))
torch.save(model_state_dic, model_path)
if __name__ == "__main__":
import torch
torch.backends.cudnn.benchmark = True
trainer = Trainer(args)
trainer.setup()
trainer.train()
|