File size: 16,776 Bytes
c964d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import os
import time
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import numpy as np
from datetime import datetime
import torch.nn.functional as F
from datasets.crowd import Crowd_TC, Crowd_UL_TC

from network import pvt_cls as TCN
from losses.multi_con_loss import MultiConLoss

from utils.pytorch_utils import Save_Handle, AverageMeter
import utils.log_utils as log_utils
import argparse
from losses.rank_loss import RankLoss

from losses import ramps
from losses.ot_loss import OT_Loss
from losses.consistency_loss import *

parser = argparse.ArgumentParser(description='Train')
parser.add_argument('--data-dir', default='/users/k2254235/Lab/TCT/Dataset/London_103050/', help='data path')  
 
parser.add_argument('--dataset', default='TC')
parser.add_argument('--lr', type=float, default=1e-5, help='the initial learning rate')
parser.add_argument('--weight-decay', type=float, default=1e-4, help='the weight decay')
parser.add_argument('--resume', default='', type=str, help='the path of resume training model')
parser.add_argument('--max-epoch', type=int, default=4000, help='max training epoch')
parser.add_argument('--val-epoch', type=int, default=1, help='the num of steps to log training information')
parser.add_argument('--val-start', type=int, default=0, help='the epoch start to val')
parser.add_argument('--batch-size', type=int, default=16, help='train batch size')
parser.add_argument('--batch-size-ul', type=int, default=16, help='train batch size')
parser.add_argument('--device', default='0', help='assign device')
parser.add_argument('--num-workers', type=int, default=0, help='the num of training process')
parser.add_argument('--crop-size', type=int, default= 256, help='the crop size of the train image')
parser.add_argument('--rl', type=float, default=1, help='entropy regularization in sinkhorn')
parser.add_argument('--reg', type=float, default=1, help='entropy regularization in sinkhorn')
parser.add_argument('--ot', type=float, default=0.1, help='entropy regularization in sinkhorn')
parser.add_argument('--tv', type=float, default=0.01, help='entropy regularization in sinkhorn')
parser.add_argument('--num-of-iter-in-ot', type=int, default=100, help='sinkhorn iterations')
parser.add_argument('--norm-cood', type=int, default=0, help='whether to norm cood when computing distance')
parser.add_argument('--run-name', default='Treeformer_test', help='run name for wandb interface/logging')
parser.add_argument('--consistency', type=int, default=1, help='whether to norm cood when computing distance')
args = parser.parse_args()


def train_collate(batch):
    transposed_batch = list(zip(*batch))
    images = torch.stack(transposed_batch[0], 0)
    gauss = torch.stack(transposed_batch[1], 0)
    points = transposed_batch[2]
    gt_discretes = torch.stack(transposed_batch[3], 0)
    return images, gauss, points, gt_discretes


def train_collate_UL(batch):
    transposed_batch = list(zip(*batch))
    images = torch.stack(transposed_batch[0], 0)
    
    return images

def get_current_consistency_weight(epoch):
    # Consistency ramp-up from https://arxiv.org/abs/1610.02242
    return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_ramp)


class Trainer(object):
    def __init__(self, args):
        self.args = args

    def setup(self):
        args = self.args
        sub_dir = (
            "SEMI/{}_12-1-input-{}_reg-{}_nIter-{}_normCood-{}".format(
                args.run_name,args.crop_size,args.reg,
                args.num_of_iter_in_ot,args.norm_cood))

        self.save_dir = os.path.join("/scratch/users/k2254235","ckpts", sub_dir)
        if not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)

        time_str = datetime.strftime(datetime.now(), "%m%d-%H%M%S")
        self.logger = log_utils.get_logger(
            os.path.join(self.save_dir, "train-{:s}.log".format(time_str)))
            
        log_utils.print_config(vars(args), self.logger)

        if torch.cuda.is_available():
            self.device = torch.device("cuda")
            self.device_count = torch.cuda.device_count()
            self.logger.info("using {} gpus".format(self.device_count))
        else:
            raise Exception("gpu is not available")
        
        
        downsample_ratio = 4
        self.datasets = {"train": Crowd_TC(os.path.join(args.data_dir, "train_data"), args.crop_size,
                downsample_ratio, "train"), "val": Crowd_TC(os.path.join(args.data_dir, "valid_data"),
                args.crop_size, downsample_ratio, "val")}
        
        self.datasets_ul = { "train_ul": Crowd_UL_TC(os.path.join(args.data_dir, "train_data_ul"), 
                args.crop_size, downsample_ratio, "train_ul")}

                
        self.dataloaders = {
            x: DataLoader(self.datasets[x],
                collate_fn=(train_collate if x == "train" else default_collate),
                batch_size=(args.batch_size if x == "train" else 1),
                shuffle=(True if x == "train" else False),
                num_workers=args.num_workers * self.device_count,
                pin_memory=(True if x == "train" else False))
            for x in ["train", "val"]}
        
        self.dataloaders_ul = {
            x: DataLoader(self.datasets_ul[x],
                collate_fn=(train_collate_UL ),
                batch_size=(args.batch_size_ul),
                shuffle=(True),
                num_workers=args.num_workers * self.device_count,
                pin_memory=(True if x == "train" else False))
            for x in ["train_ul"]}
                 

        self.model = TCN.pvt_treeformer(pretrained=False)
        
        self.model.to(self.device)
        self.optimizer = optim.AdamW(self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
        self.start_epoch = 0
        
        if args.resume:
            self.logger.info("loading pretrained model from " + args.resume)
            suf = args.resume.rsplit(".", 1)[-1]
            if suf == "tar":
                checkpoint = torch.load(args.resume, self.device)
                self.model.load_state_dict(checkpoint["model_state_dict"])
                self.optimizer.load_state_dict(
                    checkpoint["optimizer_state_dict"])
                self.start_epoch = checkpoint["epoch"] + 1
            elif suf == "pth":
                self.model.load_state_dict(
                    torch.load(args.resume, self.device))
        else:
            self.logger.info("random initialization")
            
        self.ot_loss = OT_Loss(args.crop_size, downsample_ratio, args.norm_cood, 
              self.device, args.num_of_iter_in_ot, args.reg)
              
        self.tvloss = nn.L1Loss(reduction="none").to(self.device)
        self.mse = nn.MSELoss().to(self.device)
        self.mae = nn.L1Loss().to(self.device)
        self.save_list = Save_Handle(max_num=1)
        self.best_mae = np.inf
        self.best_mse = np.inf
        self.rankloss = RankLoss().to(self.device)
        self.kl_distance = nn.KLDivLoss(reduction='none')
        self.multiconloss = MultiConLoss().to(self.device)
        
    
    def train(self):
        """training process"""
        args = self.args
        for epoch in range(self.start_epoch, args.max_epoch + 1):
            self.logger.info("-" * 5 + "Epoch {}/{}".format(epoch, args.max_epoch) + "-" * 5)
            self.epoch = epoch
            self.train_epoch()
            if epoch % args.val_epoch == 0 and epoch >= args.val_start:
                self.val_epoch()

    def train_epoch(self):
        epoch_ot_loss = AverageMeter()
        epoch_ot_obj_value = AverageMeter()
        epoch_wd = AverageMeter()
        epoch_tv_loss = AverageMeter()
        epoch_count_loss = AverageMeter()
        epoch_count_consistency_l = AverageMeter()
        epoch_count_consistency_ul = AverageMeter()
        epoch_loss = AverageMeter()
        epoch_mae = AverageMeter()
        epoch_mse = AverageMeter()
        epoch_start = time.time()
        epoch_rank_loss = AverageMeter()
        epoch_consistensy_loss = AverageMeter()
        
        self.model.train()  # Set model to training mode

        for step, (inputs, gausss, points, gt_discrete) in enumerate(self.dataloaders["train"]):
            inputs = inputs.to(self.device)
            gausss = gausss.to(self.device)
            gd_count = np.array([len(p) for p in points], dtype=np.float32)
            
            points = [p.to(self.device) for p in points]
            gt_discrete = gt_discrete.to(self.device)
            N = inputs.size(0)
             
            for st, unlabel_data in enumerate(self.dataloaders_ul["train_ul"]):
                inputs_ul = unlabel_data.to(self.device)
                break
                
                
            with torch.set_grad_enabled(True):
                outputs_L, outputs_UL, outputs_normed, CLS_L, CLS_UL = self.model(inputs, inputs_ul)
                outputs_L = outputs_L[0]
                
                with torch.set_grad_enabled(False):
                    preds_UL = (outputs_UL[0][0] + outputs_UL[1][0] + outputs_UL[2][0])/3
       
                # Compute counting loss.
                count_loss = self.mae(outputs_L.sum(1).sum(1).sum(1),torch.from_numpy(gd_count).float().to(self.device))*self.args.reg
                
                # Compute OT loss.
                ot_loss, wd, ot_obj_value = self.ot_loss(outputs_normed, outputs_L, points)
                ot_loss = ot_loss* self.args.ot
                ot_obj_value = ot_obj_value* self.args.ot
                
                gd_count_tensor = (torch.from_numpy(gd_count).float().to(self.device).unsqueeze(1).unsqueeze(2).unsqueeze(3))
                gt_discrete_normed = gt_discrete / (gd_count_tensor + 1e-6)
                tv_loss = (self.tvloss(outputs_normed, gt_discrete_normed).sum(1).sum(1).sum(1)* 
                    torch.from_numpy(gd_count).float().to(self.device)).mean(0) * self.args.tv
            
                epoch_ot_loss.update(ot_loss.item(), N)
                epoch_ot_obj_value.update(ot_obj_value.item(), N)
                epoch_wd.update(wd, N)
                epoch_count_loss.update(count_loss.item(), N)
                epoch_tv_loss.update(tv_loss.item(), N)
                   
                # Compute ranking loss.
                rank_loss = self.rankloss(outputs_UL)*self.args.rl
                epoch_rank_loss.update(rank_loss.item(), N)
                
                # Compute multi level consistancy loss
                consistency_loss = args.consistency * self.multiconloss(outputs_UL)
                epoch_consistensy_loss.update(consistency_loss.item(), N)
                
                
                # Compute consistency count
                Con_cls_UL = (CLS_UL[0] + CLS_UL[1] + CLS_UL[2])/3
                Con_cls_L = torch.from_numpy(gd_count).float().to(self.device)
                
                count_loss_l = self.mae(torch.stack((CLS_L[0],CLS_L[1],CLS_L[2])), torch.stack((Con_cls_L, Con_cls_L, Con_cls_L)))
                count_loss_ul = self.mae(torch.stack((CLS_UL[0],CLS_UL[1],CLS_UL[2])), torch.stack((Con_cls_UL, Con_cls_UL, Con_cls_UL)))
                epoch_count_consistency_l.update(count_loss_l.item(), N)
                epoch_count_consistency_ul.update(count_loss_ul.item(), N)
                
                
                loss = count_loss + ot_loss + tv_loss + rank_loss + count_loss_l + count_loss_ul + consistency_loss
                
  
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()

                pred_count = (torch.sum(outputs_L.view(N, -1),
                              dim=1).detach().cpu().numpy())
                              
                pred_err = pred_count - gd_count
                epoch_loss.update(loss.item(), N)
                epoch_mse.update(np.mean(pred_err * pred_err), N)
                epoch_mae.update(np.mean(abs(pred_err)), N)
        
        
        self.logger.info(
            "Epoch {} Train, Loss: {:.2f}, Count Loss: {:.2f}, OT Loss: {:.2e}, TV Loss: {:.2e}, Rank Loss: {:.2f},"
                "Consistensy Loss: {:.2f},  MSE: {:.2f}, MAE: {:.2f},LC Loss: {:.2f}, ULC Loss: {:.2f}, Cost {:.1f} sec".format(
                self.epoch, epoch_loss.get_avg(), epoch_count_loss.get_avg(), epoch_ot_loss.get_avg(), epoch_tv_loss.get_avg(), epoch_rank_loss.get_avg(),
                epoch_consistensy_loss.get_avg(), np.sqrt(epoch_mse.get_avg()), epoch_mae.get_avg(), epoch_count_consistency_l.get_avg(), 
                epoch_count_consistency_ul.get_avg(), time.time() - epoch_start))
                
         
                
        model_state_dic = self.model.state_dict()
        save_path = os.path.join(self.save_dir, "{}_ckpt.tar".format(self.epoch))
        
        torch.save({"epoch": self.epoch, "optimizer_state_dict": self.optimizer.state_dict(),
                "model_state_dict": model_state_dic}, save_path)
        self.save_list.append(save_path)

    def val_epoch(self):
        args = self.args
        epoch_start = time.time()
        self.model.eval()  # Set model to evaluate mode
        epoch_res = []
        for inputs, count, name, gauss_im in self.dataloaders["val"]:
            with torch.no_grad():
                inputs = inputs.to(self.device)
                crop_imgs, crop_masks = [], []
                b, c, h, w = inputs.size()
                rh, rw = args.crop_size, args.crop_size
                for i in range(0, h, rh):
                    gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                    for j in range(0, w, rw):
                        gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                        crop_imgs.append(inputs[:, :, gis:gie, gjs:gje])
                        mask = torch.zeros([b, 1, h, w]).to(self.device)
                        mask[:, :, gis:gie, gjs:gje].fill_(1.0)
                        crop_masks.append(mask)
                crop_imgs, crop_masks = map(
                    lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks))

                crop_preds = []
                nz, bz = crop_imgs.size(0), args.batch_size
                for i in range(0, nz, bz):
                    gs, gt = i, min(nz, i + bz)
                    
                    crop_pred, _ = self.model(crop_imgs[gs:gt])
                    crop_pred = crop_pred[0]
                    _, _, h1, w1 = crop_pred.size()
                    crop_pred = (F.interpolate(crop_pred, size=(h1 * 4, w1 * 4),
                            mode="bilinear", align_corners=True) / 16 )

                    crop_preds.append(crop_pred)
                crop_preds = torch.cat(crop_preds, dim=0)

                # splice them to the original size
                idx = 0
                pred_map = torch.zeros([b, 1, h, w]).to(self.device)
                for i in range(0, h, rh):
                    gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                    for j in range(0, w, rw):
                        gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                        pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
                        idx += 1
                # for the overlapping area, compute average value
                mask = crop_masks.sum(dim=0).unsqueeze(0)
                outputs = pred_map / mask

                res = count[0].item() - torch.sum(outputs).item()
                epoch_res.append(res)
        epoch_res = np.array(epoch_res)
        mse = np.sqrt(np.mean(np.square(epoch_res)))
        mae = np.mean(np.abs(epoch_res))

        self.logger.info("Epoch {} Val, MSE: {:.2f}, MAE: {:.2f}, Cost {:.1f} sec".format(
                self.epoch, mse, mae, time.time() - epoch_start ))


        model_state_dic = self.model.state_dict()
        print("Comaprison", mae,  self.best_mae)
        if mae < self.best_mae:
            self.best_mse = mse
            self.best_mae = mae
            self.logger.info(
                "save best mse {:.2f} mae {:.2f} model epoch {}".format(
                    self.best_mse, self.best_mae, self.epoch))
                    
            print("Saving best model at {} epoch".format(self.epoch))
            model_path = os.path.join(
                self.save_dir, "best_model_mae-{:.2f}_epoch-{}.pth".format(
                    self.best_mae, self.epoch))
                    
            torch.save(model_state_dic, model_path)


if __name__ == "__main__":
    import torch
    torch.backends.cudnn.benchmark = True
    trainer = Trainer(args)
    trainer.setup()
    trainer.train()