Spaces:
Running
on
L40S
Running
on
L40S
franciszzj
commited on
Commit
Β·
a72d826
1
Parent(s):
6d0a20b
update
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- README.md +1 -0
- app.py +139 -44
- examples/04181_00_garment.jpg +0 -0
- examples/14092_00_person.jpg +0 -0
- examples/14684_00_garment.jpg +0 -0
- examples/14684_00_person.jpg +0 -0
- leffa/inference.py +1 -6
- leffa/pipeline.py +17 -9
- {utils β leffa_utils}/densepose_for_mask.py +0 -0
- {utils β leffa_utils}/densepose_predictor.py +0 -0
- {utils β leffa_utils}/garment_agnostic_mask_predictor.py +1 -1
- leffa_utils/utils.py +376 -0
- preprocess/humanparsing/datasets/__init__.py +0 -0
- preprocess/humanparsing/datasets/datasets.py +201 -0
- preprocess/humanparsing/datasets/simple_extractor_dataset.py +89 -0
- preprocess/humanparsing/datasets/target_generation.py +40 -0
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py +166 -0
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py +114 -0
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py +74 -0
- preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml +179 -0
- preprocess/humanparsing/mhp_extension/detectron2/.clang-format +85 -0
- preprocess/humanparsing/mhp_extension/detectron2/.flake8 +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md +5 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md +49 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg +1 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md +5 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md +36 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md +31 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md +26 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md +45 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/.gitignore +46 -0
- preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md +79 -0
- preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md +184 -0
- preprocess/humanparsing/mhp_extension/detectron2/LICENSE +201 -0
- preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md +903 -0
- preprocess/humanparsing/mhp_extension/detectron2/README.md +56 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml +18 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml +31 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml +42 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml +24 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml +17 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml +6 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml +6 -0
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml +9 -0
README.md
CHANGED
@@ -17,6 +17,7 @@ license: mit
|
|
17 |
Star β us if you like it!
|
18 |
|
19 |
## News
|
|
|
20 |
- 18/Dec/2024, thanks to @[StartHua](https://github.com/StartHua) for integrating Leffa into ComfyUI! Here is the [repo](https://github.com/StartHua/Comfyui_leffa)!
|
21 |
- 16/Dec/2024, the virtual try-on [model](https://huggingface.co/franciszzj/Leffa/blob/main/virtual_tryon_dc.pth) trained on DressCode is released.
|
22 |
- 12/Dec/2024, the HuggingFace [demo](https://huggingface.co/spaces/franciszzj/Leffa) and [models](https://huggingface.co/franciszzj/Leffa) (virtual try-on model trained on VITON-HD and pose transfer model trained on DeepFashion) are released.
|
|
|
17 |
Star β us if you like it!
|
18 |
|
19 |
## News
|
20 |
+
- 02/Jan/2025, Update the mask generator to improve results. Add ref unet acceleration, boosting prediction speed by 30%. Include more controls in Advanced Options to enhance user experience. Enable intermediate result output for easier development. Enjoy using it!
|
21 |
- 18/Dec/2024, thanks to @[StartHua](https://github.com/StartHua) for integrating Leffa into ComfyUI! Here is the [repo](https://github.com/StartHua/Comfyui_leffa)!
|
22 |
- 16/Dec/2024, the virtual try-on [model](https://huggingface.co/franciszzj/Leffa/blob/main/virtual_tryon_dc.pth) trained on DressCode is released.
|
23 |
- 12/Dec/2024, the HuggingFace [demo](https://huggingface.co/spaces/franciszzj/Leffa) and [models](https://huggingface.co/franciszzj/Leffa) (virtual try-on model trained on VITON-HD and pose transfer model trained on DeepFashion) are released.
|
app.py
CHANGED
@@ -4,9 +4,11 @@ from huggingface_hub import snapshot_download
|
|
4 |
from leffa.transform import LeffaTransform
|
5 |
from leffa.model import LeffaModel
|
6 |
from leffa.inference import LeffaInference
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
|
|
|
|
10 |
|
11 |
import gradio as gr
|
12 |
|
@@ -26,12 +28,26 @@ class LeffaPredictor(object):
|
|
26 |
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
27 |
)
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
31 |
pretrained_model="./ckpts/virtual_tryon.pth",
|
32 |
)
|
33 |
-
self.
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
pt_model = LeffaModel(
|
37 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
@@ -39,21 +55,19 @@ class LeffaPredictor(object):
|
|
39 |
)
|
40 |
self.pt_inference = LeffaInference(model=pt_model)
|
41 |
|
42 |
-
def
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
def leffa_predict(self, src_image_path, ref_image_path, control_type, step=50, scale=2.5, seed=42):
|
57 |
assert control_type in [
|
58 |
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
59 |
src_image = Image.open(src_image_path)
|
@@ -66,19 +80,39 @@ class LeffaPredictor(object):
|
|
66 |
# Mask
|
67 |
if control_type == "virtual_tryon":
|
68 |
src_image = src_image.convert("RGB")
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
elif control_type == "pose_transfer":
|
71 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
72 |
|
73 |
# DensePose
|
74 |
if control_type == "virtual_tryon":
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
elif control_type == "pose_transfer":
|
80 |
src_image_iuv_array = self.densepose_predictor.predict_iuv(
|
81 |
-
src_image_array)
|
82 |
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
83 |
densepose = src_image_iuv
|
84 |
|
@@ -93,23 +127,28 @@ class LeffaPredictor(object):
|
|
93 |
}
|
94 |
data = transform(data)
|
95 |
if control_type == "virtual_tryon":
|
96 |
-
|
|
|
|
|
|
|
97 |
elif control_type == "pose_transfer":
|
98 |
inference = self.pt_inference
|
99 |
output = inference(
|
100 |
data,
|
|
|
101 |
num_inference_steps=step,
|
102 |
guidance_scale=scale,
|
103 |
-
seed=seed,
|
|
|
104 |
gen_image = output["generated_image"][0]
|
105 |
# gen_image.save("gen_image.png")
|
106 |
-
return np.array(gen_image)
|
107 |
|
108 |
-
def leffa_predict_vt(self, src_image_path, ref_image_path, step, scale, seed):
|
109 |
-
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", step, scale, seed)
|
110 |
|
111 |
-
def leffa_predict_pt(self, src_image_path, ref_image_path, step, scale, seed):
|
112 |
-
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", step, scale, seed)
|
113 |
|
114 |
|
115 |
if __name__ == "__main__":
|
@@ -121,14 +160,10 @@ if __name__ == "__main__":
|
|
121 |
garment_images = list_dir(f"{example_dir}/garment")
|
122 |
|
123 |
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
|
124 |
-
link = "
|
125 |
-
Star β us if you like it!
|
126 |
-
"""
|
127 |
news = """## News
|
128 |
-
-
|
129 |
-
|
130 |
-
- 12/Dec/2024, the HuggingFace [demo](https://huggingface.co/spaces/franciszzj/Leffa) and [models](https://huggingface.co/franciszzj/Leffa) (virtual try-on model trained on VITON-HD and pose transfer model trained on DeepFashion) are released.
|
131 |
-
- 11/Dec/2024, the [arXiv](https://arxiv.org/abs/2412.08486) version of the paper is released.
|
132 |
"""
|
133 |
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
|
134 |
note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."
|
@@ -185,6 +220,33 @@ if __name__ == "__main__":
|
|
185 |
vt_gen_button = gr.Button("Generate")
|
186 |
|
187 |
with gr.Accordion("Advanced Options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
vt_step = gr.Number(
|
189 |
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
|
190 |
|
@@ -194,8 +256,21 @@ if __name__ == "__main__":
|
|
194 |
vt_seed = gr.Number(
|
195 |
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
|
198 |
-
vt_src_image, vt_ref_image, vt_step, vt_scale, vt_seed], outputs=[vt_gen_image])
|
199 |
|
200 |
with gr.Tab("Control Pose (Pose Transfer)"):
|
201 |
with gr.Row():
|
@@ -243,6 +318,12 @@ if __name__ == "__main__":
|
|
243 |
pose_transfer_gen_button = gr.Button("Generate")
|
244 |
|
245 |
with gr.Accordion("Advanced Options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
pt_step = gr.Number(
|
247 |
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
|
248 |
|
@@ -252,9 +333,23 @@ if __name__ == "__main__":
|
|
252 |
pt_seed = gr.Number(
|
253 |
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
|
256 |
-
pt_src_image, pt_ref_image, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image])
|
257 |
|
258 |
gr.Markdown(note)
|
259 |
|
260 |
-
demo.launch(share=True, server_port=7860
|
|
|
|
4 |
from leffa.transform import LeffaTransform
|
5 |
from leffa.model import LeffaModel
|
6 |
from leffa.inference import LeffaInference
|
7 |
+
from leffa_utils.garment_agnostic_mask_predictor import AutoMasker
|
8 |
+
from leffa_utils.densepose_predictor import DensePosePredictor
|
9 |
+
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
|
10 |
+
from preprocess.humanparsing.run_parsing import Parsing
|
11 |
+
from preprocess.openpose.run_openpose import OpenPose
|
12 |
|
13 |
import gradio as gr
|
14 |
|
|
|
28 |
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
29 |
)
|
30 |
|
31 |
+
self.parsing = Parsing(
|
32 |
+
atr_path="./ckpts/humanparsing/parsing_atr.onnx",
|
33 |
+
lip_path="./ckpts/humanparsing/parsing_lip.onnx",
|
34 |
+
)
|
35 |
+
|
36 |
+
self.openpose = OpenPose(
|
37 |
+
body_model_path="./ckpts/openpose/body_pose_model.pth",
|
38 |
+
)
|
39 |
+
|
40 |
+
vt_model_hd = LeffaModel(
|
41 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
42 |
pretrained_model="./ckpts/virtual_tryon.pth",
|
43 |
)
|
44 |
+
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
|
45 |
+
|
46 |
+
vt_model_dc = LeffaModel(
|
47 |
+
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
48 |
+
pretrained_model="./ckpts/virtual_tryon_dc.pth",
|
49 |
+
)
|
50 |
+
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
|
51 |
|
52 |
pt_model = LeffaModel(
|
53 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
|
|
55 |
)
|
56 |
self.pt_inference = LeffaInference(model=pt_model)
|
57 |
|
58 |
+
def leffa_predict(
|
59 |
+
self,
|
60 |
+
src_image_path,
|
61 |
+
ref_image_path,
|
62 |
+
control_type,
|
63 |
+
ref_acceleration=True,
|
64 |
+
step=50,
|
65 |
+
scale=2.5,
|
66 |
+
seed=42,
|
67 |
+
vt_model_type="viton_hd",
|
68 |
+
vt_garment_type="upper_body",
|
69 |
+
vt_repaint=False
|
70 |
+
):
|
|
|
|
|
71 |
assert control_type in [
|
72 |
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
73 |
src_image = Image.open(src_image_path)
|
|
|
80 |
# Mask
|
81 |
if control_type == "virtual_tryon":
|
82 |
src_image = src_image.convert("RGB")
|
83 |
+
model_parse, _ = self.parsing(src_image.resize((384, 512)))
|
84 |
+
keypoints = self.openpose(src_image.resize((384, 512)))
|
85 |
+
if vt_model_type == "viton_hd":
|
86 |
+
mask = get_agnostic_mask_hd(
|
87 |
+
model_parse, keypoints, vt_garment_type)
|
88 |
+
elif vt_model_type == "dress_code":
|
89 |
+
mask = get_agnostic_mask_dc(
|
90 |
+
model_parse, keypoints, vt_garment_type)
|
91 |
+
mask = mask.resize((768, 1024))
|
92 |
+
# garment_type_hd = "upper" if vt_garment_type in [
|
93 |
+
# "upper_body", "dresses"] else "lower"
|
94 |
+
# mask = self.mask_predictor(src_image, garment_type_hd)["mask"]
|
95 |
elif control_type == "pose_transfer":
|
96 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
97 |
|
98 |
# DensePose
|
99 |
if control_type == "virtual_tryon":
|
100 |
+
if vt_model_type == "viton_hd":
|
101 |
+
src_image_seg_array = self.densepose_predictor.predict_seg(
|
102 |
+
src_image_array)[:, :, ::-1]
|
103 |
+
src_image_seg = Image.fromarray(src_image_seg_array)
|
104 |
+
densepose = src_image_seg
|
105 |
+
elif vt_model_type == "dress_code":
|
106 |
+
src_image_iuv_array = self.densepose_predictor.predict_iuv(
|
107 |
+
src_image_array)
|
108 |
+
src_image_seg_array = src_image_iuv_array[:, :, 0:1]
|
109 |
+
src_image_seg_array = np.concatenate(
|
110 |
+
[src_image_seg_array] * 3, axis=-1)
|
111 |
+
src_image_seg = Image.fromarray(src_image_seg_array)
|
112 |
+
densepose = src_image_seg
|
113 |
elif control_type == "pose_transfer":
|
114 |
src_image_iuv_array = self.densepose_predictor.predict_iuv(
|
115 |
+
src_image_array)[:, :, ::-1]
|
116 |
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
117 |
densepose = src_image_iuv
|
118 |
|
|
|
127 |
}
|
128 |
data = transform(data)
|
129 |
if control_type == "virtual_tryon":
|
130 |
+
if vt_model_type == "viton_hd":
|
131 |
+
inference = self.vt_inference_hd
|
132 |
+
elif vt_model_type == "dress_code":
|
133 |
+
inference = self.vt_inference_dc
|
134 |
elif control_type == "pose_transfer":
|
135 |
inference = self.pt_inference
|
136 |
output = inference(
|
137 |
data,
|
138 |
+
ref_acceleration=ref_acceleration,
|
139 |
num_inference_steps=step,
|
140 |
guidance_scale=scale,
|
141 |
+
seed=seed,
|
142 |
+
repaint=vt_repaint,)
|
143 |
gen_image = output["generated_image"][0]
|
144 |
# gen_image.save("gen_image.png")
|
145 |
+
return np.array(gen_image), np.array(mask), np.array(densepose)
|
146 |
|
147 |
+
def leffa_predict_vt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
|
148 |
+
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
|
149 |
|
150 |
+
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
|
151 |
+
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
|
152 |
|
153 |
|
154 |
if __name__ == "__main__":
|
|
|
160 |
garment_images = list_dir(f"{example_dir}/garment")
|
161 |
|
162 |
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
|
163 |
+
link = "[π Paper](https://arxiv.org/abs/2412.08486) - [π€ Code](https://github.com/franciszzj/Leffa) - [π₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [π€ Model](https://huggingface.co/franciszzj/Leffa)"
|
|
|
|
|
164 |
news = """## News
|
165 |
+
- 02/Jan/2025, Update the mask generator to improve results. Add ref unet acceleration, boosting prediction speed by 30%. Include more controls in Advanced Options to enhance user experience. Enable intermediate result output for easier development. Enjoy using it!
|
166 |
+
More news can be found in the [GitHub repository](https://github.com/franciszzj/Leffa).
|
|
|
|
|
167 |
"""
|
168 |
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
|
169 |
note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."
|
|
|
220 |
vt_gen_button = gr.Button("Generate")
|
221 |
|
222 |
with gr.Accordion("Advanced Options", open=False):
|
223 |
+
vt_model_type = gr.Radio(
|
224 |
+
label="Model Type",
|
225 |
+
choices=[("VITON-HD (Recommended)", "viton_hd"),
|
226 |
+
("DressCode (Experimental)", "dress_code")],
|
227 |
+
value="viton_hd",
|
228 |
+
)
|
229 |
+
|
230 |
+
vt_garment_type = gr.Radio(
|
231 |
+
label="Garment Type",
|
232 |
+
choices=[("Upper", "upper_body"),
|
233 |
+
("Lower", "lower_body"),
|
234 |
+
("Dress", "dresses")],
|
235 |
+
value="upper_body",
|
236 |
+
)
|
237 |
+
|
238 |
+
vt_ref_acceleration = gr.Radio(
|
239 |
+
label="Accelerate Reference UNet (may slightly reduce performance)",
|
240 |
+
choices=[("True", True), ("False", False)],
|
241 |
+
value=False,
|
242 |
+
)
|
243 |
+
|
244 |
+
vt_repaint = gr.Radio(
|
245 |
+
label="Repaint Mode",
|
246 |
+
choices=[("True", True), ("False", False)],
|
247 |
+
value=False,
|
248 |
+
)
|
249 |
+
|
250 |
vt_step = gr.Number(
|
251 |
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
|
252 |
|
|
|
256 |
vt_seed = gr.Number(
|
257 |
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
258 |
|
259 |
+
with gr.Accordion("Debug", open=False):
|
260 |
+
vt_mask = gr.Image(
|
261 |
+
label="Generated Mask",
|
262 |
+
width=256,
|
263 |
+
height=256,
|
264 |
+
)
|
265 |
+
|
266 |
+
vt_densepose = gr.Image(
|
267 |
+
label="Generated DensePose",
|
268 |
+
width=256,
|
269 |
+
height=256,
|
270 |
+
)
|
271 |
+
|
272 |
vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
|
273 |
+
vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])
|
274 |
|
275 |
with gr.Tab("Control Pose (Pose Transfer)"):
|
276 |
with gr.Row():
|
|
|
318 |
pose_transfer_gen_button = gr.Button("Generate")
|
319 |
|
320 |
with gr.Accordion("Advanced Options", open=False):
|
321 |
+
pt_ref_acceleration = gr.Radio(
|
322 |
+
label="Accelerate Reference UNet",
|
323 |
+
choices=[("True", True), ("False", False)],
|
324 |
+
value=False,
|
325 |
+
)
|
326 |
+
|
327 |
pt_step = gr.Number(
|
328 |
label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
|
329 |
|
|
|
333 |
pt_seed = gr.Number(
|
334 |
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
335 |
|
336 |
+
with gr.Accordion("Debug", open=False):
|
337 |
+
pt_mask = gr.Image(
|
338 |
+
label="Generated Mask",
|
339 |
+
width=256,
|
340 |
+
height=256,
|
341 |
+
)
|
342 |
+
|
343 |
+
pt_densepose = gr.Image(
|
344 |
+
label="Generated DensePose",
|
345 |
+
width=256,
|
346 |
+
height=256,
|
347 |
+
)
|
348 |
+
|
349 |
pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
|
350 |
+
pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])
|
351 |
|
352 |
gr.Markdown(note)
|
353 |
|
354 |
+
demo.launch(share=True, server_port=7860,
|
355 |
+
allowed_paths=["./ckpts/examples"])
|
examples/04181_00_garment.jpg
DELETED
Binary file (45.6 kB)
|
|
examples/14092_00_person.jpg
DELETED
Binary file (178 kB)
|
|
examples/14684_00_garment.jpg
DELETED
Binary file (99.3 kB)
|
|
examples/14684_00_person.jpg
DELETED
Binary file (115 kB)
|
|
leffa/inference.py
CHANGED
@@ -16,15 +16,10 @@ class LeffaInference(object):
|
|
16 |
def __init__(
|
17 |
self,
|
18 |
model: nn.Module,
|
19 |
-
ckpt_path: Optional[str] = None,
|
20 |
) -> None:
|
21 |
-
self.model: torch.nn.Module = model
|
22 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
-
|
25 |
-
if ckpt_path is not None:
|
26 |
-
self.model.load_state_dict(torch.load(ckpt_path, map_location="cpu"))
|
27 |
-
self.model = self.model.to(self.device)
|
28 |
self.model.eval()
|
29 |
|
30 |
self.pipe = LeffaPipeline(model=self.model)
|
|
|
16 |
def __init__(
|
17 |
self,
|
18 |
model: nn.Module,
|
|
|
19 |
) -> None:
|
|
|
20 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
|
22 |
+
self.model = model.to(self.device)
|
|
|
|
|
|
|
23 |
self.model.eval()
|
24 |
|
25 |
self.pipe = LeffaPipeline(model=self.model)
|
leffa/pipeline.py
CHANGED
@@ -12,14 +12,12 @@ class LeffaPipeline(object):
|
|
12 |
def __init__(
|
13 |
self,
|
14 |
model,
|
15 |
-
repaint=False,
|
16 |
device="cuda",
|
17 |
):
|
18 |
self.vae = model.vae
|
19 |
self.unet_encoder = model.unet_encoder
|
20 |
self.unet = model.unet
|
21 |
self.noise_scheduler = model.noise_scheduler
|
22 |
-
self.repaint = repaint # used for virtual try-on
|
23 |
self.device = device
|
24 |
|
25 |
def prepare_extra_step_kwargs(self, generator, eta):
|
@@ -50,11 +48,13 @@ class LeffaPipeline(object):
|
|
50 |
ref_image,
|
51 |
mask,
|
52 |
densepose,
|
53 |
-
|
|
|
54 |
do_classifier_free_guidance=True,
|
55 |
-
guidance_scale
|
56 |
generator=None,
|
57 |
eta=1.0,
|
|
|
58 |
**kwargs,
|
59 |
):
|
60 |
src_image = src_image.to(device=self.vae.device, dtype=self.vae.dtype)
|
@@ -100,6 +100,13 @@ class LeffaPipeline(object):
|
|
100 |
len(timesteps) - num_inference_steps * self.noise_scheduler.order
|
101 |
)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
|
104 |
for i, t in enumerate(timesteps):
|
105 |
# expand the latent if we are doing classifier free guidance
|
@@ -122,10 +129,11 @@ class LeffaPipeline(object):
|
|
122 |
dim=1,
|
123 |
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
|
130 |
# predict the noise residual
|
131 |
noise_pred = self.unet(
|
@@ -166,7 +174,7 @@ class LeffaPipeline(object):
|
|
166 |
# Decode the final latent
|
167 |
gen_image = latent_to_image(latent, self.vae)
|
168 |
|
169 |
-
if
|
170 |
src_image = (src_image / 2 + 0.5).clamp(0, 1)
|
171 |
src_image = src_image.cpu().permute(0, 2, 3, 1).float().numpy()
|
172 |
src_image = numpy_to_pil(src_image)
|
|
|
12 |
def __init__(
|
13 |
self,
|
14 |
model,
|
|
|
15 |
device="cuda",
|
16 |
):
|
17 |
self.vae = model.vae
|
18 |
self.unet_encoder = model.unet_encoder
|
19 |
self.unet = model.unet
|
20 |
self.noise_scheduler = model.noise_scheduler
|
|
|
21 |
self.device = device
|
22 |
|
23 |
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
48 |
ref_image,
|
49 |
mask,
|
50 |
densepose,
|
51 |
+
ref_acceleration=True,
|
52 |
+
num_inference_steps=50,
|
53 |
do_classifier_free_guidance=True,
|
54 |
+
guidance_scale=2.5,
|
55 |
generator=None,
|
56 |
eta=1.0,
|
57 |
+
repaint=False, # used for virtual try-on
|
58 |
**kwargs,
|
59 |
):
|
60 |
src_image = src_image.to(device=self.vae.device, dtype=self.vae.dtype)
|
|
|
100 |
len(timesteps) - num_inference_steps * self.noise_scheduler.order
|
101 |
)
|
102 |
|
103 |
+
if ref_acceleration:
|
104 |
+
down, reference_features = self.unet_encoder(
|
105 |
+
ref_image_latent, timesteps[num_inference_steps//2], encoder_hidden_states=None, return_dict=False
|
106 |
+
)
|
107 |
+
reference_features = list(reference_features)
|
108 |
+
|
109 |
+
|
110 |
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
|
111 |
for i, t in enumerate(timesteps):
|
112 |
# expand the latent if we are doing classifier free guidance
|
|
|
129 |
dim=1,
|
130 |
)
|
131 |
|
132 |
+
if not ref_acceleration:
|
133 |
+
down, reference_features = self.unet_encoder(
|
134 |
+
ref_image_latent, t, encoder_hidden_states=None, return_dict=False
|
135 |
+
)
|
136 |
+
reference_features = list(reference_features)
|
137 |
|
138 |
# predict the noise residual
|
139 |
noise_pred = self.unet(
|
|
|
174 |
# Decode the final latent
|
175 |
gen_image = latent_to_image(latent, self.vae)
|
176 |
|
177 |
+
if repaint:
|
178 |
src_image = (src_image / 2 + 0.5).clamp(0, 1)
|
179 |
src_image = src_image.cpu().permute(0, 2, 3, 1).float().numpy()
|
180 |
src_image = numpy_to_pil(src_image)
|
{utils β leffa_utils}/densepose_for_mask.py
RENAMED
File without changes
|
{utils β leffa_utils}/densepose_predictor.py
RENAMED
File without changes
|
{utils β leffa_utils}/garment_agnostic_mask_predictor.py
RENAMED
@@ -8,7 +8,7 @@ from diffusers.image_processor import VaeImageProcessor
|
|
8 |
from PIL import Image
|
9 |
from SCHP import SCHP # type: ignore
|
10 |
|
11 |
-
from
|
12 |
|
13 |
DENSE_INDEX_MAP = {
|
14 |
"background": [0],
|
|
|
8 |
from PIL import Image
|
9 |
from SCHP import SCHP # type: ignore
|
10 |
|
11 |
+
from leffa_utils.densepose_for_mask import DensePose # type: ignore
|
12 |
|
13 |
DENSE_INDEX_MAP = {
|
14 |
"background": [0],
|
leffa_utils/utils.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from numpy.linalg import lstsq
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
|
8 |
+
|
9 |
+
def resize_and_center(image, target_width, target_height):
|
10 |
+
img = np.array(image)
|
11 |
+
|
12 |
+
if img.shape[-1] == 4:
|
13 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
|
14 |
+
elif len(img.shape) == 2 or img.shape[-1] == 1:
|
15 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
16 |
+
|
17 |
+
original_height, original_width = img.shape[:2]
|
18 |
+
|
19 |
+
scale = min(target_height / original_height, target_width / original_width)
|
20 |
+
new_height = int(original_height * scale)
|
21 |
+
new_width = int(original_width * scale)
|
22 |
+
|
23 |
+
resized_img = cv2.resize(img, (new_width, new_height),
|
24 |
+
interpolation=cv2.INTER_CUBIC)
|
25 |
+
|
26 |
+
padded_img = np.ones((target_height, target_width, 3),
|
27 |
+
dtype=np.uint8) * 255
|
28 |
+
|
29 |
+
top = (target_height - new_height) // 2
|
30 |
+
left = (target_width - new_width) // 2
|
31 |
+
|
32 |
+
padded_img[top:top + new_height, left:left + new_width] = resized_img
|
33 |
+
|
34 |
+
return Image.fromarray(padded_img)
|
35 |
+
|
36 |
+
|
37 |
+
def list_dir(folder_path):
|
38 |
+
# Collect all file paths within the directory
|
39 |
+
file_paths = []
|
40 |
+
for root, _, files in os.walk(folder_path):
|
41 |
+
for file in files:
|
42 |
+
file_paths.append(os.path.join(root, file))
|
43 |
+
|
44 |
+
file_paths = sorted(file_paths)
|
45 |
+
return file_paths
|
46 |
+
|
47 |
+
|
48 |
+
label_map = {
|
49 |
+
"background": 0,
|
50 |
+
"hat": 1,
|
51 |
+
"hair": 2,
|
52 |
+
"sunglasses": 3,
|
53 |
+
"upper_clothes": 4,
|
54 |
+
"skirt": 5,
|
55 |
+
"pants": 6,
|
56 |
+
"dress": 7,
|
57 |
+
"belt": 8,
|
58 |
+
"left_shoe": 9,
|
59 |
+
"right_shoe": 10,
|
60 |
+
"head": 11,
|
61 |
+
"left_leg": 12,
|
62 |
+
"right_leg": 13,
|
63 |
+
"left_arm": 14,
|
64 |
+
"right_arm": 15,
|
65 |
+
"bag": 16,
|
66 |
+
"scarf": 17,
|
67 |
+
"neck": 18,
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def extend_arm_mask(wrist, elbow, scale):
|
72 |
+
wrist = elbow + scale * (wrist - elbow)
|
73 |
+
return wrist
|
74 |
+
|
75 |
+
|
76 |
+
def hole_fill(img):
|
77 |
+
img = np.pad(img[1:-1, 1:-1], pad_width=1,
|
78 |
+
mode='constant', constant_values=0)
|
79 |
+
img_copy = img.copy()
|
80 |
+
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
|
81 |
+
|
82 |
+
cv2.floodFill(img, mask, (0, 0), 255)
|
83 |
+
img_inverse = cv2.bitwise_not(img)
|
84 |
+
dst = cv2.bitwise_or(img_copy, img_inverse)
|
85 |
+
return dst
|
86 |
+
|
87 |
+
|
88 |
+
def refine_mask(mask):
|
89 |
+
contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
|
90 |
+
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
|
91 |
+
area = []
|
92 |
+
for j in range(len(contours)):
|
93 |
+
a_d = cv2.contourArea(contours[j], True)
|
94 |
+
area.append(abs(a_d))
|
95 |
+
refine_mask = np.zeros_like(mask).astype(np.uint8)
|
96 |
+
if len(area) != 0:
|
97 |
+
i = area.index(max(area))
|
98 |
+
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
|
99 |
+
|
100 |
+
return refine_mask
|
101 |
+
|
102 |
+
|
103 |
+
def get_agnostic_mask_hd(model_parse, keypoint, category, size=(384, 512)):
|
104 |
+
model_type = "hd"
|
105 |
+
##############################
|
106 |
+
width, height = size
|
107 |
+
im_parse = model_parse.resize((width, height), Image.NEAREST)
|
108 |
+
parse_array = np.array(im_parse)
|
109 |
+
|
110 |
+
if model_type == 'hd':
|
111 |
+
arm_width = 60
|
112 |
+
elif model_type == 'dc':
|
113 |
+
arm_width = 45
|
114 |
+
else:
|
115 |
+
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
116 |
+
|
117 |
+
parse_head = (parse_array == 1).astype(np.float32) + \
|
118 |
+
(parse_array == 3).astype(np.float32) + \
|
119 |
+
(parse_array == 11).astype(np.float32)
|
120 |
+
|
121 |
+
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
122 |
+
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
123 |
+
(parse_array == label_map["hat"]).astype(np.float32) + \
|
124 |
+
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
125 |
+
(parse_array == label_map["bag"]).astype(np.float32)
|
126 |
+
|
127 |
+
parser_mask_changeable = (
|
128 |
+
parse_array == label_map["background"]).astype(np.float32)
|
129 |
+
|
130 |
+
arms_left = (parse_array == 14).astype(np.float32)
|
131 |
+
arms_right = (parse_array == 15).astype(np.float32)
|
132 |
+
|
133 |
+
if category == 'dresses':
|
134 |
+
parse_mask = (parse_array == 7).astype(np.float32) + \
|
135 |
+
(parse_array == 4).astype(np.float32) + \
|
136 |
+
(parse_array == 5).astype(np.float32) + \
|
137 |
+
(parse_array == 6).astype(np.float32)
|
138 |
+
|
139 |
+
parser_mask_changeable += np.logical_and(
|
140 |
+
parse_array, np.logical_not(parser_mask_fixed))
|
141 |
+
|
142 |
+
elif category == 'upper_body':
|
143 |
+
parse_mask = (parse_array == 4).astype(np.float32) + \
|
144 |
+
(parse_array == 7).astype(np.float32)
|
145 |
+
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
146 |
+
(parse_array == label_map["pants"]).astype(
|
147 |
+
np.float32)
|
148 |
+
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
149 |
+
parser_mask_changeable += np.logical_and(
|
150 |
+
parse_array, np.logical_not(parser_mask_fixed))
|
151 |
+
elif category == 'lower_body':
|
152 |
+
parse_mask = (parse_array == 6).astype(np.float32) + \
|
153 |
+
(parse_array == 12).astype(np.float32) + \
|
154 |
+
(parse_array == 13).astype(np.float32) + \
|
155 |
+
(parse_array == 5).astype(np.float32)
|
156 |
+
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
157 |
+
(parse_array == 14).astype(np.float32) + \
|
158 |
+
(parse_array == 15).astype(np.float32)
|
159 |
+
parser_mask_changeable += np.logical_and(
|
160 |
+
parse_array, np.logical_not(parser_mask_fixed))
|
161 |
+
else:
|
162 |
+
raise NotImplementedError
|
163 |
+
|
164 |
+
# Load pose points
|
165 |
+
pose_data = keypoint["pose_keypoints_2d"]
|
166 |
+
pose_data = np.array(pose_data)
|
167 |
+
pose_data = pose_data.reshape((-1, 2))
|
168 |
+
|
169 |
+
im_arms_left = Image.new('L', (width, height))
|
170 |
+
im_arms_right = Image.new('L', (width, height))
|
171 |
+
arms_draw_left = ImageDraw.Draw(im_arms_left)
|
172 |
+
arms_draw_right = ImageDraw.Draw(im_arms_right)
|
173 |
+
if category == 'dresses' or category == 'upper_body':
|
174 |
+
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
|
175 |
+
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
|
176 |
+
elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
|
177 |
+
elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
|
178 |
+
wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
|
179 |
+
wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)
|
180 |
+
ARM_LINE_WIDTH = int(arm_width / 512 * height)
|
181 |
+
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH //
|
182 |
+
2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
183 |
+
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
184 |
+
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
185 |
+
|
186 |
+
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
187 |
+
im_arms_right = arms_right
|
188 |
+
else:
|
189 |
+
wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
|
190 |
+
arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(
|
191 |
+
np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
|
192 |
+
arms_draw_right.arc(size_right, 0, 360,
|
193 |
+
'white', ARM_LINE_WIDTH // 2)
|
194 |
+
|
195 |
+
if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
|
196 |
+
im_arms_left = arms_left
|
197 |
+
else:
|
198 |
+
wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
|
199 |
+
arms_draw_left.line(np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(
|
200 |
+
np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
|
201 |
+
arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)
|
202 |
+
|
203 |
+
hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
|
204 |
+
hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
|
205 |
+
parser_mask_fixed += hands_left + hands_right
|
206 |
+
|
207 |
+
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
208 |
+
parse_mask = cv2.dilate(parse_mask, np.ones(
|
209 |
+
(5, 5), np.uint16), iterations=5)
|
210 |
+
if category == 'dresses' or category == 'upper_body':
|
211 |
+
neck_mask = (parse_array == 18).astype(np.float32)
|
212 |
+
neck_mask = cv2.dilate(neck_mask, np.ones(
|
213 |
+
(5, 5), np.uint16), iterations=1)
|
214 |
+
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
|
215 |
+
parse_mask = np.logical_or(parse_mask, neck_mask)
|
216 |
+
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype(
|
217 |
+
'float32'), np.ones((5, 5), np.uint16), iterations=4)
|
218 |
+
parse_mask += np.logical_or(parse_mask, arm_mask)
|
219 |
+
|
220 |
+
parse_mask = np.logical_and(
|
221 |
+
parser_mask_changeable, np.logical_not(parse_mask))
|
222 |
+
|
223 |
+
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
|
224 |
+
inpaint_mask = 1 - parse_mask_total
|
225 |
+
img = np.where(inpaint_mask, 255, 0)
|
226 |
+
dst = hole_fill(img.astype(np.uint8))
|
227 |
+
dst = refine_mask(dst)
|
228 |
+
inpaint_mask = dst / 255 * 1
|
229 |
+
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
|
230 |
+
|
231 |
+
return mask
|
232 |
+
|
233 |
+
|
234 |
+
def get_agnostic_mask_dc(model_parse, keypoint, category, size=(384, 512)):
|
235 |
+
parse_array = np.array(model_parse)
|
236 |
+
pose_data = keypoint["pose_keypoints_2d"]
|
237 |
+
pose_data = np.array(pose_data)
|
238 |
+
pose_data = pose_data.reshape((-1, 2))
|
239 |
+
|
240 |
+
parse_shape = (parse_array > 0).astype(np.float32)
|
241 |
+
|
242 |
+
parse_head = (parse_array == 1).astype(np.float32) + \
|
243 |
+
(parse_array == 2).astype(np.float32) + \
|
244 |
+
(parse_array == 3).astype(np.float32) + \
|
245 |
+
(parse_array == 11).astype(np.float32) + \
|
246 |
+
(parse_array == 18).astype(np.float32)
|
247 |
+
|
248 |
+
parser_mask_fixed = (parse_array == label_map["hair"]).astype(np.float32) + \
|
249 |
+
(parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
250 |
+
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
251 |
+
(parse_array == label_map["hat"]).astype(np.float32) + \
|
252 |
+
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
253 |
+
(parse_array == label_map["scarf"]).astype(np.float32) + \
|
254 |
+
(parse_array == label_map["bag"]).astype(np.float32)
|
255 |
+
|
256 |
+
parser_mask_changeable = (
|
257 |
+
parse_array == label_map["background"]).astype(np.float32)
|
258 |
+
|
259 |
+
arms = (parse_array == 14).astype(np.float32) + \
|
260 |
+
(parse_array == 15).astype(np.float32)
|
261 |
+
|
262 |
+
if category == 'dresses':
|
263 |
+
label_cat = 7
|
264 |
+
parse_mask = (parse_array == 7).astype(np.float32) + \
|
265 |
+
(parse_array == 12).astype(np.float32) + \
|
266 |
+
(parse_array == 13).astype(np.float32)
|
267 |
+
parser_mask_changeable += np.logical_and(
|
268 |
+
parse_array, np.logical_not(parser_mask_fixed))
|
269 |
+
|
270 |
+
elif category == 'upper_body':
|
271 |
+
label_cat = 4
|
272 |
+
parse_mask = (parse_array == 4).astype(np.float32)
|
273 |
+
|
274 |
+
parser_mask_fixed += (parse_array == label_map["skirt"]).astype(np.float32) + \
|
275 |
+
(parse_array == label_map["pants"]).astype(np.float32)
|
276 |
+
|
277 |
+
parser_mask_changeable += np.logical_and(
|
278 |
+
parse_array, np.logical_not(parser_mask_fixed))
|
279 |
+
elif category == 'lower_body':
|
280 |
+
label_cat = 6
|
281 |
+
parse_mask = (parse_array == 6).astype(np.float32) + \
|
282 |
+
(parse_array == 12).astype(np.float32) + \
|
283 |
+
(parse_array == 13).astype(np.float32)
|
284 |
+
|
285 |
+
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
286 |
+
(parse_array == 14).astype(np.float32) + \
|
287 |
+
(parse_array == 15).astype(np.float32)
|
288 |
+
parser_mask_changeable += np.logical_and(
|
289 |
+
parse_array, np.logical_not(parser_mask_fixed))
|
290 |
+
|
291 |
+
parse_head = torch.from_numpy(parse_head) # [0,1]
|
292 |
+
parse_mask = torch.from_numpy(parse_mask) # [0,1]
|
293 |
+
parser_mask_fixed = torch.from_numpy(parser_mask_fixed)
|
294 |
+
parser_mask_changeable = torch.from_numpy(parser_mask_changeable)
|
295 |
+
|
296 |
+
# dilation
|
297 |
+
parse_without_cloth = np.logical_and(
|
298 |
+
parse_shape, np.logical_not(parse_mask))
|
299 |
+
parse_mask = parse_mask.cpu().numpy()
|
300 |
+
|
301 |
+
width = size[0]
|
302 |
+
height = size[1]
|
303 |
+
|
304 |
+
im_arms = Image.new('L', (width, height))
|
305 |
+
arms_draw = ImageDraw.Draw(im_arms)
|
306 |
+
if category == 'dresses' or category == 'upper_body':
|
307 |
+
shoulder_right = tuple(np.multiply(pose_data[2, :2], height / 512.0))
|
308 |
+
shoulder_left = tuple(np.multiply(pose_data[5, :2], height / 512.0))
|
309 |
+
elbow_right = tuple(np.multiply(pose_data[3, :2], height / 512.0))
|
310 |
+
elbow_left = tuple(np.multiply(pose_data[6, :2], height / 512.0))
|
311 |
+
wrist_right = tuple(np.multiply(pose_data[4, :2], height / 512.0))
|
312 |
+
wrist_left = tuple(np.multiply(pose_data[7, :2], height / 512.0))
|
313 |
+
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
314 |
+
if elbow_right[0] <= 1. and elbow_right[1] <= 1.:
|
315 |
+
arms_draw.line(
|
316 |
+
[wrist_left, elbow_left, shoulder_left, shoulder_right], 'white', 30, 'curve')
|
317 |
+
else:
|
318 |
+
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right], 'white', 30,
|
319 |
+
'curve')
|
320 |
+
elif wrist_left[0] <= 1. and wrist_left[1] <= 1.:
|
321 |
+
if elbow_left[0] <= 1. and elbow_left[1] <= 1.:
|
322 |
+
arms_draw.line([shoulder_left, shoulder_right,
|
323 |
+
elbow_right, wrist_right], 'white', 30, 'curve')
|
324 |
+
else:
|
325 |
+
arms_draw.line([elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30,
|
326 |
+
'curve')
|
327 |
+
else:
|
328 |
+
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white',
|
329 |
+
30, 'curve')
|
330 |
+
|
331 |
+
if height > 512:
|
332 |
+
im_arms = cv2.dilate(np.float32(im_arms), np.ones(
|
333 |
+
(10, 10), np.uint16), iterations=5)
|
334 |
+
elif height > 256:
|
335 |
+
im_arms = cv2.dilate(np.float32(im_arms), np.ones(
|
336 |
+
(5, 5), np.uint16), iterations=5)
|
337 |
+
hands = np.logical_and(np.logical_not(im_arms), arms)
|
338 |
+
parse_mask += im_arms
|
339 |
+
parser_mask_fixed += hands
|
340 |
+
|
341 |
+
# delete neck
|
342 |
+
parse_head_2 = torch.clone(parse_head)
|
343 |
+
if category == 'dresses' or category == 'upper_body':
|
344 |
+
points = []
|
345 |
+
points.append(np.multiply(pose_data[2, :2], height / 512.0))
|
346 |
+
points.append(np.multiply(pose_data[5, :2], height / 512.0))
|
347 |
+
x_coords, y_coords = zip(*points)
|
348 |
+
A = np.vstack([x_coords, np.ones(len(x_coords))]).T
|
349 |
+
m, c = lstsq(A, y_coords, rcond=None)[0]
|
350 |
+
for i in range(parse_array.shape[1]):
|
351 |
+
y = i * m + c
|
352 |
+
parse_head_2[int(y - 20 * (height / 512.0)):, i] = 0
|
353 |
+
|
354 |
+
parser_mask_fixed = np.logical_or(
|
355 |
+
parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16))
|
356 |
+
parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16),
|
357 |
+
np.logical_not(np.array(parse_head_2, dtype=np.uint16))))
|
358 |
+
|
359 |
+
if height > 512:
|
360 |
+
parse_mask = cv2.dilate(parse_mask, np.ones(
|
361 |
+
(20, 20), np.uint16), iterations=5)
|
362 |
+
elif height > 256:
|
363 |
+
parse_mask = cv2.dilate(parse_mask, np.ones(
|
364 |
+
(10, 10), np.uint16), iterations=5)
|
365 |
+
else:
|
366 |
+
parse_mask = cv2.dilate(parse_mask, np.ones(
|
367 |
+
(5, 5), np.uint16), iterations=5)
|
368 |
+
parse_mask = np.logical_and(
|
369 |
+
parser_mask_changeable, np.logical_not(parse_mask))
|
370 |
+
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
|
371 |
+
inpaint_mask = 1 - parse_mask_total
|
372 |
+
img = np.where(inpaint_mask, 255, 0)
|
373 |
+
img = hole_fill(img.astype(np.uint8))
|
374 |
+
inpaint_mask = img / 255 * 1
|
375 |
+
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
|
376 |
+
return mask
|
preprocess/humanparsing/datasets/__init__.py
ADDED
File without changes
|
preprocess/humanparsing/datasets/datasets.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
@Author : Peike Li
|
6 |
+
@Contact : [email protected]
|
7 |
+
@File : datasets.py
|
8 |
+
@Time : 8/4/19 3:35 PM
|
9 |
+
@Desc :
|
10 |
+
@License : This source code is licensed under the license found in the
|
11 |
+
LICENSE file in the root directory of this source tree.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
import numpy as np
|
16 |
+
import random
|
17 |
+
import torch
|
18 |
+
import cv2
|
19 |
+
from torch.utils import data
|
20 |
+
from utils.transforms import get_affine_transform
|
21 |
+
|
22 |
+
|
23 |
+
class LIPDataSet(data.Dataset):
|
24 |
+
def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
|
25 |
+
rotation_factor=30, ignore_label=255, transform=None):
|
26 |
+
self.root = root
|
27 |
+
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
28 |
+
self.crop_size = np.asarray(crop_size)
|
29 |
+
self.ignore_label = ignore_label
|
30 |
+
self.scale_factor = scale_factor
|
31 |
+
self.rotation_factor = rotation_factor
|
32 |
+
self.flip_prob = 0.5
|
33 |
+
self.transform = transform
|
34 |
+
self.dataset = dataset
|
35 |
+
|
36 |
+
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
37 |
+
train_list = [i_id.strip() for i_id in open(list_path)]
|
38 |
+
|
39 |
+
self.train_list = train_list
|
40 |
+
self.number_samples = len(self.train_list)
|
41 |
+
|
42 |
+
def __len__(self):
|
43 |
+
return self.number_samples
|
44 |
+
|
45 |
+
def _box2cs(self, box):
|
46 |
+
x, y, w, h = box[:4]
|
47 |
+
return self._xywh2cs(x, y, w, h)
|
48 |
+
|
49 |
+
def _xywh2cs(self, x, y, w, h):
|
50 |
+
center = np.zeros((2), dtype=np.float32)
|
51 |
+
center[0] = x + w * 0.5
|
52 |
+
center[1] = y + h * 0.5
|
53 |
+
if w > self.aspect_ratio * h:
|
54 |
+
h = w * 1.0 / self.aspect_ratio
|
55 |
+
elif w < self.aspect_ratio * h:
|
56 |
+
w = h * self.aspect_ratio
|
57 |
+
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
58 |
+
return center, scale
|
59 |
+
|
60 |
+
def __getitem__(self, index):
|
61 |
+
train_item = self.train_list[index]
|
62 |
+
|
63 |
+
im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
|
64 |
+
parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
|
65 |
+
|
66 |
+
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
67 |
+
h, w, _ = im.shape
|
68 |
+
parsing_anno = np.zeros((h, w), dtype=np.long)
|
69 |
+
|
70 |
+
# Get person center and scale
|
71 |
+
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
72 |
+
r = 0
|
73 |
+
|
74 |
+
if self.dataset != 'test':
|
75 |
+
# Get pose annotation
|
76 |
+
parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
|
77 |
+
if self.dataset == 'train' or self.dataset == 'trainval':
|
78 |
+
sf = self.scale_factor
|
79 |
+
rf = self.rotation_factor
|
80 |
+
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
|
81 |
+
r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
|
82 |
+
|
83 |
+
if random.random() <= self.flip_prob:
|
84 |
+
im = im[:, ::-1, :]
|
85 |
+
parsing_anno = parsing_anno[:, ::-1]
|
86 |
+
person_center[0] = im.shape[1] - person_center[0] - 1
|
87 |
+
right_idx = [15, 17, 19]
|
88 |
+
left_idx = [14, 16, 18]
|
89 |
+
for i in range(0, 3):
|
90 |
+
right_pos = np.where(parsing_anno == right_idx[i])
|
91 |
+
left_pos = np.where(parsing_anno == left_idx[i])
|
92 |
+
parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
|
93 |
+
parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
|
94 |
+
|
95 |
+
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
96 |
+
input = cv2.warpAffine(
|
97 |
+
im,
|
98 |
+
trans,
|
99 |
+
(int(self.crop_size[1]), int(self.crop_size[0])),
|
100 |
+
flags=cv2.INTER_LINEAR,
|
101 |
+
borderMode=cv2.BORDER_CONSTANT,
|
102 |
+
borderValue=(0, 0, 0))
|
103 |
+
|
104 |
+
if self.transform:
|
105 |
+
input = self.transform(input)
|
106 |
+
|
107 |
+
meta = {
|
108 |
+
'name': train_item,
|
109 |
+
'center': person_center,
|
110 |
+
'height': h,
|
111 |
+
'width': w,
|
112 |
+
'scale': s,
|
113 |
+
'rotation': r
|
114 |
+
}
|
115 |
+
|
116 |
+
if self.dataset == 'val' or self.dataset == 'test':
|
117 |
+
return input, meta
|
118 |
+
else:
|
119 |
+
label_parsing = cv2.warpAffine(
|
120 |
+
parsing_anno,
|
121 |
+
trans,
|
122 |
+
(int(self.crop_size[1]), int(self.crop_size[0])),
|
123 |
+
flags=cv2.INTER_NEAREST,
|
124 |
+
borderMode=cv2.BORDER_CONSTANT,
|
125 |
+
borderValue=(255))
|
126 |
+
|
127 |
+
label_parsing = torch.from_numpy(label_parsing)
|
128 |
+
|
129 |
+
return input, label_parsing, meta
|
130 |
+
|
131 |
+
|
132 |
+
class LIPDataValSet(data.Dataset):
|
133 |
+
def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
|
134 |
+
self.root = root
|
135 |
+
self.crop_size = crop_size
|
136 |
+
self.transform = transform
|
137 |
+
self.flip = flip
|
138 |
+
self.dataset = dataset
|
139 |
+
self.root = root
|
140 |
+
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
141 |
+
self.crop_size = np.asarray(crop_size)
|
142 |
+
|
143 |
+
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
144 |
+
val_list = [i_id.strip() for i_id in open(list_path)]
|
145 |
+
|
146 |
+
self.val_list = val_list
|
147 |
+
self.number_samples = len(self.val_list)
|
148 |
+
|
149 |
+
def __len__(self):
|
150 |
+
return len(self.val_list)
|
151 |
+
|
152 |
+
def _box2cs(self, box):
|
153 |
+
x, y, w, h = box[:4]
|
154 |
+
return self._xywh2cs(x, y, w, h)
|
155 |
+
|
156 |
+
def _xywh2cs(self, x, y, w, h):
|
157 |
+
center = np.zeros((2), dtype=np.float32)
|
158 |
+
center[0] = x + w * 0.5
|
159 |
+
center[1] = y + h * 0.5
|
160 |
+
if w > self.aspect_ratio * h:
|
161 |
+
h = w * 1.0 / self.aspect_ratio
|
162 |
+
elif w < self.aspect_ratio * h:
|
163 |
+
w = h * self.aspect_ratio
|
164 |
+
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
165 |
+
|
166 |
+
return center, scale
|
167 |
+
|
168 |
+
def __getitem__(self, index):
|
169 |
+
val_item = self.val_list[index]
|
170 |
+
# Load training image
|
171 |
+
im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg')
|
172 |
+
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
173 |
+
h, w, _ = im.shape
|
174 |
+
# Get person center and scale
|
175 |
+
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
176 |
+
r = 0
|
177 |
+
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
178 |
+
input = cv2.warpAffine(
|
179 |
+
im,
|
180 |
+
trans,
|
181 |
+
(int(self.crop_size[1]), int(self.crop_size[0])),
|
182 |
+
flags=cv2.INTER_LINEAR,
|
183 |
+
borderMode=cv2.BORDER_CONSTANT,
|
184 |
+
borderValue=(0, 0, 0))
|
185 |
+
input = self.transform(input)
|
186 |
+
flip_input = input.flip(dims=[-1])
|
187 |
+
if self.flip:
|
188 |
+
batch_input_im = torch.stack([input, flip_input])
|
189 |
+
else:
|
190 |
+
batch_input_im = input
|
191 |
+
|
192 |
+
meta = {
|
193 |
+
'name': val_item,
|
194 |
+
'center': person_center,
|
195 |
+
'height': h,
|
196 |
+
'width': w,
|
197 |
+
'scale': s,
|
198 |
+
'rotation': r
|
199 |
+
}
|
200 |
+
|
201 |
+
return batch_input_im, meta
|
preprocess/humanparsing/datasets/simple_extractor_dataset.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
@Author : Peike Li
|
6 |
+
@Contact : [email protected]
|
7 |
+
@File : dataset.py
|
8 |
+
@Time : 8/30/19 9:12 PM
|
9 |
+
@Desc : Dataset Definition
|
10 |
+
@License : This source code is licensed under the license found in the
|
11 |
+
LICENSE file in the root directory of this source tree.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
import pdb
|
16 |
+
|
17 |
+
import cv2
|
18 |
+
import numpy as np
|
19 |
+
from PIL import Image
|
20 |
+
from torch.utils import data
|
21 |
+
from utils.transforms import get_affine_transform
|
22 |
+
|
23 |
+
|
24 |
+
class SimpleFolderDataset(data.Dataset):
|
25 |
+
def __init__(self, root, input_size=[512, 512], transform=None):
|
26 |
+
self.root = root
|
27 |
+
self.input_size = input_size
|
28 |
+
self.transform = transform
|
29 |
+
self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
|
30 |
+
self.input_size = np.asarray(input_size)
|
31 |
+
self.is_pil_image = False
|
32 |
+
if isinstance(root, Image.Image):
|
33 |
+
self.file_list = [root]
|
34 |
+
self.is_pil_image = True
|
35 |
+
elif os.path.isfile(root):
|
36 |
+
self.file_list = [os.path.basename(root)]
|
37 |
+
self.root = os.path.dirname(root)
|
38 |
+
else:
|
39 |
+
self.file_list = os.listdir(self.root)
|
40 |
+
|
41 |
+
def __len__(self):
|
42 |
+
return len(self.file_list)
|
43 |
+
|
44 |
+
def _box2cs(self, box):
|
45 |
+
x, y, w, h = box[:4]
|
46 |
+
return self._xywh2cs(x, y, w, h)
|
47 |
+
|
48 |
+
def _xywh2cs(self, x, y, w, h):
|
49 |
+
center = np.zeros((2), dtype=np.float32)
|
50 |
+
center[0] = x + w * 0.5
|
51 |
+
center[1] = y + h * 0.5
|
52 |
+
if w > self.aspect_ratio * h:
|
53 |
+
h = w * 1.0 / self.aspect_ratio
|
54 |
+
elif w < self.aspect_ratio * h:
|
55 |
+
w = h * self.aspect_ratio
|
56 |
+
scale = np.array([w, h], dtype=np.float32)
|
57 |
+
return center, scale
|
58 |
+
|
59 |
+
def __getitem__(self, index):
|
60 |
+
if self.is_pil_image:
|
61 |
+
img = np.asarray(self.file_list[index])[:, :, [2, 1, 0]]
|
62 |
+
else:
|
63 |
+
img_name = self.file_list[index]
|
64 |
+
img_path = os.path.join(self.root, img_name)
|
65 |
+
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
66 |
+
h, w, _ = img.shape
|
67 |
+
|
68 |
+
# Get person center and scale
|
69 |
+
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
70 |
+
r = 0
|
71 |
+
trans = get_affine_transform(person_center, s, r, self.input_size)
|
72 |
+
input = cv2.warpAffine(
|
73 |
+
img,
|
74 |
+
trans,
|
75 |
+
(int(self.input_size[1]), int(self.input_size[0])),
|
76 |
+
flags=cv2.INTER_LINEAR,
|
77 |
+
borderMode=cv2.BORDER_CONSTANT,
|
78 |
+
borderValue=(0, 0, 0))
|
79 |
+
|
80 |
+
input = self.transform(input)
|
81 |
+
meta = {
|
82 |
+
'center': person_center,
|
83 |
+
'height': h,
|
84 |
+
'width': w,
|
85 |
+
'scale': s,
|
86 |
+
'rotation': r
|
87 |
+
}
|
88 |
+
|
89 |
+
return input, meta
|
preprocess/humanparsing/datasets/target_generation.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
|
5 |
+
def generate_edge_tensor(label, edge_width=3):
|
6 |
+
label = label.type(torch.cuda.FloatTensor)
|
7 |
+
if len(label.shape) == 2:
|
8 |
+
label = label.unsqueeze(0)
|
9 |
+
n, h, w = label.shape
|
10 |
+
edge = torch.zeros(label.shape, dtype=torch.float).cuda()
|
11 |
+
# right
|
12 |
+
edge_right = edge[:, 1:h, :]
|
13 |
+
edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
|
14 |
+
& (label[:, :h - 1, :] != 255)] = 1
|
15 |
+
|
16 |
+
# up
|
17 |
+
edge_up = edge[:, :, :w - 1]
|
18 |
+
edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
|
19 |
+
& (label[:, :, :w - 1] != 255)
|
20 |
+
& (label[:, :, 1:w] != 255)] = 1
|
21 |
+
|
22 |
+
# upright
|
23 |
+
edge_upright = edge[:, :h - 1, :w - 1]
|
24 |
+
edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
|
25 |
+
& (label[:, :h - 1, :w - 1] != 255)
|
26 |
+
& (label[:, 1:h, 1:w] != 255)] = 1
|
27 |
+
|
28 |
+
# bottomright
|
29 |
+
edge_bottomright = edge[:, :h - 1, 1:w]
|
30 |
+
edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
|
31 |
+
& (label[:, :h - 1, 1:w] != 255)
|
32 |
+
& (label[:, 1:h, :w - 1] != 255)] = 1
|
33 |
+
|
34 |
+
kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda()
|
35 |
+
with torch.no_grad():
|
36 |
+
edge = edge.unsqueeze(1)
|
37 |
+
edge = F.conv2d(edge, kernel, stride=1, padding=1)
|
38 |
+
edge[edge!=0] = 1
|
39 |
+
edge = edge.squeeze()
|
40 |
+
return edge
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import pycococreatortools
|
9 |
+
|
10 |
+
|
11 |
+
def get_arguments():
|
12 |
+
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
13 |
+
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
14 |
+
parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
|
15 |
+
help="path to save coco-style annotation json file")
|
16 |
+
parser.add_argument("--use_val", type=bool, default=False,
|
17 |
+
help="use train+val set for finetuning or not")
|
18 |
+
parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
|
19 |
+
help="train image path")
|
20 |
+
parser.add_argument("--train_anno_dir", type=str,
|
21 |
+
default='../data/instance-level_human_parsing/Training/Human_ids',
|
22 |
+
help="train human mask path")
|
23 |
+
parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
|
24 |
+
help="val image path")
|
25 |
+
parser.add_argument("--val_anno_dir", type=str,
|
26 |
+
default='../data/instance-level_human_parsing/Validation/Human_ids',
|
27 |
+
help="val human mask path")
|
28 |
+
return parser.parse_args()
|
29 |
+
|
30 |
+
|
31 |
+
def main(args):
|
32 |
+
INFO = {
|
33 |
+
"description": args.split_name + " Dataset",
|
34 |
+
"url": "",
|
35 |
+
"version": "",
|
36 |
+
"year": 2019,
|
37 |
+
"contributor": "xyq",
|
38 |
+
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
39 |
+
}
|
40 |
+
|
41 |
+
LICENSES = [
|
42 |
+
{
|
43 |
+
"id": 1,
|
44 |
+
"name": "",
|
45 |
+
"url": ""
|
46 |
+
}
|
47 |
+
]
|
48 |
+
|
49 |
+
CATEGORIES = [
|
50 |
+
{
|
51 |
+
'id': 1,
|
52 |
+
'name': 'person',
|
53 |
+
'supercategory': 'person',
|
54 |
+
},
|
55 |
+
]
|
56 |
+
|
57 |
+
coco_output = {
|
58 |
+
"info": INFO,
|
59 |
+
"licenses": LICENSES,
|
60 |
+
"categories": CATEGORIES,
|
61 |
+
"images": [],
|
62 |
+
"annotations": []
|
63 |
+
}
|
64 |
+
|
65 |
+
image_id = 1
|
66 |
+
segmentation_id = 1
|
67 |
+
|
68 |
+
for image_name in os.listdir(args.train_img_dir):
|
69 |
+
image = Image.open(os.path.join(args.train_img_dir, image_name))
|
70 |
+
image_info = pycococreatortools.create_image_info(
|
71 |
+
image_id, image_name, image.size
|
72 |
+
)
|
73 |
+
coco_output["images"].append(image_info)
|
74 |
+
|
75 |
+
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
76 |
+
human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
|
77 |
+
human_gt_labels = np.unique(human_mask)
|
78 |
+
|
79 |
+
for i in range(1, len(human_gt_labels)):
|
80 |
+
category_info = {'id': 1, 'is_crowd': 0}
|
81 |
+
binary_mask = np.uint8(human_mask == i)
|
82 |
+
annotation_info = pycococreatortools.create_annotation_info(
|
83 |
+
segmentation_id, image_id, category_info, binary_mask,
|
84 |
+
image.size, tolerance=10
|
85 |
+
)
|
86 |
+
if annotation_info is not None:
|
87 |
+
coco_output["annotations"].append(annotation_info)
|
88 |
+
|
89 |
+
segmentation_id += 1
|
90 |
+
image_id += 1
|
91 |
+
|
92 |
+
if not os.path.exists(args.json_save_dir):
|
93 |
+
os.makedirs(args.json_save_dir)
|
94 |
+
if not args.use_val:
|
95 |
+
with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
96 |
+
json.dump(coco_output, output_json_file)
|
97 |
+
else:
|
98 |
+
for image_name in os.listdir(args.val_img_dir):
|
99 |
+
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
100 |
+
image_info = pycococreatortools.create_image_info(
|
101 |
+
image_id, image_name, image.size
|
102 |
+
)
|
103 |
+
coco_output["images"].append(image_info)
|
104 |
+
|
105 |
+
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
106 |
+
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
107 |
+
human_gt_labels = np.unique(human_mask)
|
108 |
+
|
109 |
+
for i in range(1, len(human_gt_labels)):
|
110 |
+
category_info = {'id': 1, 'is_crowd': 0}
|
111 |
+
binary_mask = np.uint8(human_mask == i)
|
112 |
+
annotation_info = pycococreatortools.create_annotation_info(
|
113 |
+
segmentation_id, image_id, category_info, binary_mask,
|
114 |
+
image.size, tolerance=10
|
115 |
+
)
|
116 |
+
if annotation_info is not None:
|
117 |
+
coco_output["annotations"].append(annotation_info)
|
118 |
+
|
119 |
+
segmentation_id += 1
|
120 |
+
image_id += 1
|
121 |
+
|
122 |
+
with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
123 |
+
json.dump(coco_output, output_json_file)
|
124 |
+
|
125 |
+
coco_output_val = {
|
126 |
+
"info": INFO,
|
127 |
+
"licenses": LICENSES,
|
128 |
+
"categories": CATEGORIES,
|
129 |
+
"images": [],
|
130 |
+
"annotations": []
|
131 |
+
}
|
132 |
+
|
133 |
+
image_id_val = 1
|
134 |
+
segmentation_id_val = 1
|
135 |
+
|
136 |
+
for image_name in os.listdir(args.val_img_dir):
|
137 |
+
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
138 |
+
image_info = pycococreatortools.create_image_info(
|
139 |
+
image_id_val, image_name, image.size
|
140 |
+
)
|
141 |
+
coco_output_val["images"].append(image_info)
|
142 |
+
|
143 |
+
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
144 |
+
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
145 |
+
human_gt_labels = np.unique(human_mask)
|
146 |
+
|
147 |
+
for i in range(1, len(human_gt_labels)):
|
148 |
+
category_info = {'id': 1, 'is_crowd': 0}
|
149 |
+
binary_mask = np.uint8(human_mask == i)
|
150 |
+
annotation_info = pycococreatortools.create_annotation_info(
|
151 |
+
segmentation_id_val, image_id_val, category_info, binary_mask,
|
152 |
+
image.size, tolerance=10
|
153 |
+
)
|
154 |
+
if annotation_info is not None:
|
155 |
+
coco_output_val["annotations"].append(annotation_info)
|
156 |
+
|
157 |
+
segmentation_id_val += 1
|
158 |
+
image_id_val += 1
|
159 |
+
|
160 |
+
with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
|
161 |
+
json.dump(coco_output_val, output_json_file_val)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
args = get_arguments()
|
166 |
+
main(args)
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import datetime
|
3 |
+
import numpy as np
|
4 |
+
from itertools import groupby
|
5 |
+
from skimage import measure
|
6 |
+
from PIL import Image
|
7 |
+
from pycocotools import mask
|
8 |
+
|
9 |
+
convert = lambda text: int(text) if text.isdigit() else text.lower()
|
10 |
+
natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
11 |
+
|
12 |
+
|
13 |
+
def resize_binary_mask(array, new_size):
|
14 |
+
image = Image.fromarray(array.astype(np.uint8) * 255)
|
15 |
+
image = image.resize(new_size)
|
16 |
+
return np.asarray(image).astype(np.bool_)
|
17 |
+
|
18 |
+
|
19 |
+
def close_contour(contour):
|
20 |
+
if not np.array_equal(contour[0], contour[-1]):
|
21 |
+
contour = np.vstack((contour, contour[0]))
|
22 |
+
return contour
|
23 |
+
|
24 |
+
|
25 |
+
def binary_mask_to_rle(binary_mask):
|
26 |
+
rle = {'counts': [], 'size': list(binary_mask.shape)}
|
27 |
+
counts = rle.get('counts')
|
28 |
+
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
|
29 |
+
if i == 0 and value == 1:
|
30 |
+
counts.append(0)
|
31 |
+
counts.append(len(list(elements)))
|
32 |
+
|
33 |
+
return rle
|
34 |
+
|
35 |
+
|
36 |
+
def binary_mask_to_polygon(binary_mask, tolerance=0):
|
37 |
+
"""Converts a binary mask to COCO polygon representation
|
38 |
+
Args:
|
39 |
+
binary_mask: a 2D binary numpy array where '1's represent the object
|
40 |
+
tolerance: Maximum distance from original points of polygon to approximated
|
41 |
+
polygonal chain. If tolerance is 0, the original coordinate array is returned.
|
42 |
+
"""
|
43 |
+
polygons = []
|
44 |
+
# pad mask to close contours of shapes which start and end at an edge
|
45 |
+
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
|
46 |
+
contours = measure.find_contours(padded_binary_mask, 0.5)
|
47 |
+
contours = np.subtract(contours, 1)
|
48 |
+
for contour in contours:
|
49 |
+
contour = close_contour(contour)
|
50 |
+
contour = measure.approximate_polygon(contour, tolerance)
|
51 |
+
if len(contour) < 3:
|
52 |
+
continue
|
53 |
+
contour = np.flip(contour, axis=1)
|
54 |
+
segmentation = contour.ravel().tolist()
|
55 |
+
# after padding and subtracting 1 we may get -0.5 points in our segmentation
|
56 |
+
segmentation = [0 if i < 0 else i for i in segmentation]
|
57 |
+
polygons.append(segmentation)
|
58 |
+
|
59 |
+
return polygons
|
60 |
+
|
61 |
+
|
62 |
+
def create_image_info(image_id, file_name, image_size,
|
63 |
+
date_captured=datetime.datetime.utcnow().isoformat(' '),
|
64 |
+
license_id=1, coco_url="", flickr_url=""):
|
65 |
+
image_info = {
|
66 |
+
"id": image_id,
|
67 |
+
"file_name": file_name,
|
68 |
+
"width": image_size[0],
|
69 |
+
"height": image_size[1],
|
70 |
+
"date_captured": date_captured,
|
71 |
+
"license": license_id,
|
72 |
+
"coco_url": coco_url,
|
73 |
+
"flickr_url": flickr_url
|
74 |
+
}
|
75 |
+
|
76 |
+
return image_info
|
77 |
+
|
78 |
+
|
79 |
+
def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
|
80 |
+
image_size=None, tolerance=2, bounding_box=None):
|
81 |
+
if image_size is not None:
|
82 |
+
binary_mask = resize_binary_mask(binary_mask, image_size)
|
83 |
+
|
84 |
+
binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
|
85 |
+
|
86 |
+
area = mask.area(binary_mask_encoded)
|
87 |
+
if area < 1:
|
88 |
+
return None
|
89 |
+
|
90 |
+
if bounding_box is None:
|
91 |
+
bounding_box = mask.toBbox(binary_mask_encoded)
|
92 |
+
|
93 |
+
if category_info["is_crowd"]:
|
94 |
+
is_crowd = 1
|
95 |
+
segmentation = binary_mask_to_rle(binary_mask)
|
96 |
+
else:
|
97 |
+
is_crowd = 0
|
98 |
+
segmentation = binary_mask_to_polygon(binary_mask, tolerance)
|
99 |
+
if not segmentation:
|
100 |
+
return None
|
101 |
+
|
102 |
+
annotation_info = {
|
103 |
+
"id": annotation_id,
|
104 |
+
"image_id": image_id,
|
105 |
+
"category_id": category_info["id"],
|
106 |
+
"iscrowd": is_crowd,
|
107 |
+
"area": area.tolist(),
|
108 |
+
"bbox": bounding_box.tolist(),
|
109 |
+
"segmentation": segmentation,
|
110 |
+
"width": binary_mask.shape[1],
|
111 |
+
"height": binary_mask.shape[0],
|
112 |
+
}
|
113 |
+
|
114 |
+
return annotation_info
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
import pycococreatortools
|
8 |
+
|
9 |
+
|
10 |
+
def get_arguments():
|
11 |
+
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
12 |
+
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
13 |
+
parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
|
14 |
+
help="path to save coco-style annotation json file")
|
15 |
+
parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
|
16 |
+
help="test image path")
|
17 |
+
return parser.parse_args()
|
18 |
+
|
19 |
+
args = get_arguments()
|
20 |
+
|
21 |
+
INFO = {
|
22 |
+
"description": args.dataset + "Dataset",
|
23 |
+
"url": "",
|
24 |
+
"version": "",
|
25 |
+
"year": 2020,
|
26 |
+
"contributor": "yunqiuxu",
|
27 |
+
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
28 |
+
}
|
29 |
+
|
30 |
+
LICENSES = [
|
31 |
+
{
|
32 |
+
"id": 1,
|
33 |
+
"name": "",
|
34 |
+
"url": ""
|
35 |
+
}
|
36 |
+
]
|
37 |
+
|
38 |
+
CATEGORIES = [
|
39 |
+
{
|
40 |
+
'id': 1,
|
41 |
+
'name': 'person',
|
42 |
+
'supercategory': 'person',
|
43 |
+
},
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
def main(args):
|
48 |
+
coco_output = {
|
49 |
+
"info": INFO,
|
50 |
+
"licenses": LICENSES,
|
51 |
+
"categories": CATEGORIES,
|
52 |
+
"images": [],
|
53 |
+
"annotations": []
|
54 |
+
}
|
55 |
+
|
56 |
+
image_id = 1
|
57 |
+
|
58 |
+
for image_name in os.listdir(args.test_img_dir):
|
59 |
+
image = Image.open(os.path.join(args.test_img_dir, image_name))
|
60 |
+
image_info = pycococreatortools.create_image_info(
|
61 |
+
image_id, image_name, image.size
|
62 |
+
)
|
63 |
+
coco_output["images"].append(image_info)
|
64 |
+
image_id += 1
|
65 |
+
|
66 |
+
if not os.path.exists(os.path.join(args.json_save_dir)):
|
67 |
+
os.mkdir(os.path.join(args.json_save_dir))
|
68 |
+
|
69 |
+
with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
|
70 |
+
json.dump(coco_output, output_json_file)
|
71 |
+
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
main(args)
|
preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python CircleCI 2.0 configuration file
|
2 |
+
#
|
3 |
+
# Check https://circleci.com/docs/2.0/language-python/ for more details
|
4 |
+
#
|
5 |
+
version: 2
|
6 |
+
|
7 |
+
# -------------------------------------------------------------------------------------
|
8 |
+
# Environments to run the jobs in
|
9 |
+
# -------------------------------------------------------------------------------------
|
10 |
+
cpu: &cpu
|
11 |
+
docker:
|
12 |
+
- image: circleci/python:3.6.8-stretch
|
13 |
+
resource_class: medium
|
14 |
+
|
15 |
+
gpu: &gpu
|
16 |
+
machine:
|
17 |
+
image: ubuntu-1604:201903-01
|
18 |
+
docker_layer_caching: true
|
19 |
+
resource_class: gpu.small
|
20 |
+
|
21 |
+
# -------------------------------------------------------------------------------------
|
22 |
+
# Re-usable commands
|
23 |
+
# -------------------------------------------------------------------------------------
|
24 |
+
install_python: &install_python
|
25 |
+
- run:
|
26 |
+
name: Install Python
|
27 |
+
working_directory: ~/
|
28 |
+
command: |
|
29 |
+
pyenv install 3.6.1
|
30 |
+
pyenv global 3.6.1
|
31 |
+
|
32 |
+
setup_venv: &setup_venv
|
33 |
+
- run:
|
34 |
+
name: Setup Virtual Env
|
35 |
+
working_directory: ~/
|
36 |
+
command: |
|
37 |
+
python -m venv ~/venv
|
38 |
+
echo ". ~/venv/bin/activate" >> $BASH_ENV
|
39 |
+
. ~/venv/bin/activate
|
40 |
+
python --version
|
41 |
+
which python
|
42 |
+
which pip
|
43 |
+
pip install --upgrade pip
|
44 |
+
|
45 |
+
install_dep: &install_dep
|
46 |
+
- run:
|
47 |
+
name: Install Dependencies
|
48 |
+
command: |
|
49 |
+
pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
|
50 |
+
pip install --progress-bar off cython opencv-python
|
51 |
+
pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
|
52 |
+
pip install --progress-bar off torch torchvision
|
53 |
+
|
54 |
+
install_detectron2: &install_detectron2
|
55 |
+
- run:
|
56 |
+
name: Install Detectron2
|
57 |
+
command: |
|
58 |
+
gcc --version
|
59 |
+
pip install -U --progress-bar off -e .[dev]
|
60 |
+
python -m detectron2.utils.collect_env
|
61 |
+
|
62 |
+
install_nvidia_driver: &install_nvidia_driver
|
63 |
+
- run:
|
64 |
+
name: Install nvidia driver
|
65 |
+
working_directory: ~/
|
66 |
+
command: |
|
67 |
+
wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
|
68 |
+
sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
|
69 |
+
nvidia-smi
|
70 |
+
|
71 |
+
run_unittests: &run_unittests
|
72 |
+
- run:
|
73 |
+
name: Run Unit Tests
|
74 |
+
command: |
|
75 |
+
python -m unittest discover -v -s tests
|
76 |
+
|
77 |
+
# -------------------------------------------------------------------------------------
|
78 |
+
# Jobs to run
|
79 |
+
# -------------------------------------------------------------------------------------
|
80 |
+
jobs:
|
81 |
+
cpu_tests:
|
82 |
+
<<: *cpu
|
83 |
+
|
84 |
+
working_directory: ~/detectron2
|
85 |
+
|
86 |
+
steps:
|
87 |
+
- checkout
|
88 |
+
- <<: *setup_venv
|
89 |
+
|
90 |
+
# Cache the venv directory that contains dependencies
|
91 |
+
- restore_cache:
|
92 |
+
keys:
|
93 |
+
- cache-key-{{ .Branch }}-ID-20200425
|
94 |
+
|
95 |
+
- <<: *install_dep
|
96 |
+
|
97 |
+
- save_cache:
|
98 |
+
paths:
|
99 |
+
- ~/venv
|
100 |
+
key: cache-key-{{ .Branch }}-ID-20200425
|
101 |
+
|
102 |
+
- <<: *install_detectron2
|
103 |
+
|
104 |
+
- run:
|
105 |
+
name: isort
|
106 |
+
command: |
|
107 |
+
isort -c -sp .
|
108 |
+
- run:
|
109 |
+
name: black
|
110 |
+
command: |
|
111 |
+
black --check -l 100 .
|
112 |
+
- run:
|
113 |
+
name: flake8
|
114 |
+
command: |
|
115 |
+
flake8 .
|
116 |
+
|
117 |
+
- <<: *run_unittests
|
118 |
+
|
119 |
+
gpu_tests:
|
120 |
+
<<: *gpu
|
121 |
+
|
122 |
+
working_directory: ~/detectron2
|
123 |
+
|
124 |
+
steps:
|
125 |
+
- checkout
|
126 |
+
- <<: *install_nvidia_driver
|
127 |
+
|
128 |
+
- run:
|
129 |
+
name: Install nvidia-docker
|
130 |
+
working_directory: ~/
|
131 |
+
command: |
|
132 |
+
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
133 |
+
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
134 |
+
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
|
135 |
+
sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
136 |
+
sudo apt-get update && sudo apt-get install -y nvidia-docker2
|
137 |
+
# reload the docker daemon configuration
|
138 |
+
sudo pkill -SIGHUP dockerd
|
139 |
+
|
140 |
+
- run:
|
141 |
+
name: Launch docker
|
142 |
+
working_directory: ~/detectron2/docker
|
143 |
+
command: |
|
144 |
+
nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
|
145 |
+
nvidia-docker run -itd --name d2 detectron2:v0
|
146 |
+
docker exec -it d2 nvidia-smi
|
147 |
+
|
148 |
+
- run:
|
149 |
+
name: Build Detectron2
|
150 |
+
command: |
|
151 |
+
docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
|
152 |
+
docker cp ~/detectron2 d2:/detectron2
|
153 |
+
# This will build d2 for the target GPU arch only
|
154 |
+
docker exec -it d2 pip install -e /detectron2
|
155 |
+
docker exec -it d2 python3 -m detectron2.utils.collect_env
|
156 |
+
docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
|
157 |
+
|
158 |
+
- run:
|
159 |
+
name: Run Unit Tests
|
160 |
+
command: |
|
161 |
+
docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
|
162 |
+
|
163 |
+
workflows:
|
164 |
+
version: 2
|
165 |
+
regular_test:
|
166 |
+
jobs:
|
167 |
+
- cpu_tests
|
168 |
+
- gpu_tests
|
169 |
+
|
170 |
+
#nightly_test:
|
171 |
+
#jobs:
|
172 |
+
#- gpu_tests
|
173 |
+
#triggers:
|
174 |
+
#- schedule:
|
175 |
+
#cron: "0 0 * * *"
|
176 |
+
#filters:
|
177 |
+
#branches:
|
178 |
+
#only:
|
179 |
+
#- master
|
preprocess/humanparsing/mhp_extension/detectron2/.clang-format
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AccessModifierOffset: -1
|
2 |
+
AlignAfterOpenBracket: AlwaysBreak
|
3 |
+
AlignConsecutiveAssignments: false
|
4 |
+
AlignConsecutiveDeclarations: false
|
5 |
+
AlignEscapedNewlinesLeft: true
|
6 |
+
AlignOperands: false
|
7 |
+
AlignTrailingComments: false
|
8 |
+
AllowAllParametersOfDeclarationOnNextLine: false
|
9 |
+
AllowShortBlocksOnASingleLine: false
|
10 |
+
AllowShortCaseLabelsOnASingleLine: false
|
11 |
+
AllowShortFunctionsOnASingleLine: Empty
|
12 |
+
AllowShortIfStatementsOnASingleLine: false
|
13 |
+
AllowShortLoopsOnASingleLine: false
|
14 |
+
AlwaysBreakAfterReturnType: None
|
15 |
+
AlwaysBreakBeforeMultilineStrings: true
|
16 |
+
AlwaysBreakTemplateDeclarations: true
|
17 |
+
BinPackArguments: false
|
18 |
+
BinPackParameters: false
|
19 |
+
BraceWrapping:
|
20 |
+
AfterClass: false
|
21 |
+
AfterControlStatement: false
|
22 |
+
AfterEnum: false
|
23 |
+
AfterFunction: false
|
24 |
+
AfterNamespace: false
|
25 |
+
AfterObjCDeclaration: false
|
26 |
+
AfterStruct: false
|
27 |
+
AfterUnion: false
|
28 |
+
BeforeCatch: false
|
29 |
+
BeforeElse: false
|
30 |
+
IndentBraces: false
|
31 |
+
BreakBeforeBinaryOperators: None
|
32 |
+
BreakBeforeBraces: Attach
|
33 |
+
BreakBeforeTernaryOperators: true
|
34 |
+
BreakConstructorInitializersBeforeComma: false
|
35 |
+
BreakAfterJavaFieldAnnotations: false
|
36 |
+
BreakStringLiterals: false
|
37 |
+
ColumnLimit: 80
|
38 |
+
CommentPragmas: '^ IWYU pragma:'
|
39 |
+
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
40 |
+
ConstructorInitializerIndentWidth: 4
|
41 |
+
ContinuationIndentWidth: 4
|
42 |
+
Cpp11BracedListStyle: true
|
43 |
+
DerivePointerAlignment: false
|
44 |
+
DisableFormat: false
|
45 |
+
ForEachMacros: [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
|
46 |
+
IncludeCategories:
|
47 |
+
- Regex: '^<.*\.h(pp)?>'
|
48 |
+
Priority: 1
|
49 |
+
- Regex: '^<.*'
|
50 |
+
Priority: 2
|
51 |
+
- Regex: '.*'
|
52 |
+
Priority: 3
|
53 |
+
IndentCaseLabels: true
|
54 |
+
IndentWidth: 2
|
55 |
+
IndentWrappedFunctionNames: false
|
56 |
+
KeepEmptyLinesAtTheStartOfBlocks: false
|
57 |
+
MacroBlockBegin: ''
|
58 |
+
MacroBlockEnd: ''
|
59 |
+
MaxEmptyLinesToKeep: 1
|
60 |
+
NamespaceIndentation: None
|
61 |
+
ObjCBlockIndentWidth: 2
|
62 |
+
ObjCSpaceAfterProperty: false
|
63 |
+
ObjCSpaceBeforeProtocolList: false
|
64 |
+
PenaltyBreakBeforeFirstCallParameter: 1
|
65 |
+
PenaltyBreakComment: 300
|
66 |
+
PenaltyBreakFirstLessLess: 120
|
67 |
+
PenaltyBreakString: 1000
|
68 |
+
PenaltyExcessCharacter: 1000000
|
69 |
+
PenaltyReturnTypeOnItsOwnLine: 200
|
70 |
+
PointerAlignment: Left
|
71 |
+
ReflowComments: true
|
72 |
+
SortIncludes: true
|
73 |
+
SpaceAfterCStyleCast: false
|
74 |
+
SpaceBeforeAssignmentOperators: true
|
75 |
+
SpaceBeforeParens: ControlStatements
|
76 |
+
SpaceInEmptyParentheses: false
|
77 |
+
SpacesBeforeTrailingComments: 1
|
78 |
+
SpacesInAngles: false
|
79 |
+
SpacesInContainerLiterals: true
|
80 |
+
SpacesInCStyleCastParentheses: false
|
81 |
+
SpacesInParentheses: false
|
82 |
+
SpacesInSquareBrackets: false
|
83 |
+
Standard: Cpp11
|
84 |
+
TabWidth: 8
|
85 |
+
UseTab: Never
|
preprocess/humanparsing/mhp_extension/detectron2/.flake8
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is an example .flake8 config, used when developing *Black* itself.
|
2 |
+
# Keep in sync with setup.cfg which is used for source packages.
|
3 |
+
|
4 |
+
[flake8]
|
5 |
+
ignore = W503, E203, E221, C901, C408, E741
|
6 |
+
max-line-length = 100
|
7 |
+
max-complexity = 18
|
8 |
+
select = B,C,E,F,W,T4,B9
|
9 |
+
exclude = build,__init__.py
|
preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code of Conduct
|
2 |
+
|
3 |
+
Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
|
4 |
+
Please read the [full text](https://code.fb.com/codeofconduct/)
|
5 |
+
so that you can understand what actions will and will not be tolerated.
|
preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Contributing to detectron2
|
2 |
+
|
3 |
+
## Issues
|
4 |
+
We use GitHub issues to track public bugs and questions.
|
5 |
+
Please make sure to follow one of the
|
6 |
+
[issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
|
7 |
+
when reporting any issues.
|
8 |
+
|
9 |
+
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
|
10 |
+
disclosure of security bugs. In those cases, please go through the process
|
11 |
+
outlined on that page and do not file a public issue.
|
12 |
+
|
13 |
+
## Pull Requests
|
14 |
+
We actively welcome your pull requests.
|
15 |
+
|
16 |
+
However, if you're adding any significant features (e.g. > 50 lines), please
|
17 |
+
make sure to have a corresponding issue to discuss your motivation and proposals,
|
18 |
+
before sending a PR. We do not always accept new features, and we take the following
|
19 |
+
factors into consideration:
|
20 |
+
|
21 |
+
1. Whether the same feature can be achieved without modifying detectron2.
|
22 |
+
Detectron2 is designed so that you can implement many extensions from the outside, e.g.
|
23 |
+
those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
|
24 |
+
If some part is not as extensible, you can also bring up the issue to make it more extensible.
|
25 |
+
2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
|
26 |
+
3. Whether the proposed solution has a good design / interface.
|
27 |
+
4. Whether the proposed solution adds extra mental/practical overhead to users who don't
|
28 |
+
need such feature.
|
29 |
+
5. Whether the proposed solution breaks existing APIs.
|
30 |
+
|
31 |
+
When sending a PR, please do:
|
32 |
+
|
33 |
+
1. If a PR contains multiple orthogonal changes, split it to several PRs.
|
34 |
+
2. If you've added code that should be tested, add tests.
|
35 |
+
3. For PRs that need experiments (e.g. adding a new model or new methods),
|
36 |
+
you don't need to update model zoo, but do provide experiment results in the description of the PR.
|
37 |
+
4. If APIs are changed, update the documentation.
|
38 |
+
5. Make sure your code lints with `./dev/linter.sh`.
|
39 |
+
|
40 |
+
|
41 |
+
## Contributor License Agreement ("CLA")
|
42 |
+
In order to accept your pull request, we need you to submit a CLA. You only need
|
43 |
+
to do this once to work on any of Facebook's open source projects.
|
44 |
+
|
45 |
+
Complete your CLA here: <https://code.facebook.com/cla>
|
46 |
+
|
47 |
+
## License
|
48 |
+
By contributing to detectron2, you agree that your contributions will be licensed
|
49 |
+
under the LICENSE file in the root directory of this source tree.
|
preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
ADDED
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Please select an issue template from
|
3 |
+
https://github.com/facebookresearch/detectron2/issues/new/choose .
|
4 |
+
|
5 |
+
Otherwise your issue will be closed.
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "π Bugs"
|
3 |
+
about: Report bugs in detectron2
|
4 |
+
title: Please read & provide the following
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## Instructions To Reproduce the π Bug:
|
9 |
+
|
10 |
+
1. what changes you made (`git diff`) or what code you wrote
|
11 |
+
```
|
12 |
+
<put diff or code here>
|
13 |
+
```
|
14 |
+
2. what exact command you run:
|
15 |
+
3. what you observed (including __full logs__):
|
16 |
+
```
|
17 |
+
<put logs here>
|
18 |
+
```
|
19 |
+
4. please simplify the steps as much as possible so they do not require additional resources to
|
20 |
+
run, such as a private dataset.
|
21 |
+
|
22 |
+
## Expected behavior:
|
23 |
+
|
24 |
+
If there are no obvious error in "what you observed" provided above,
|
25 |
+
please tell us the expected behavior.
|
26 |
+
|
27 |
+
## Environment:
|
28 |
+
|
29 |
+
Provide your environment information using the following command:
|
30 |
+
```
|
31 |
+
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
|
32 |
+
```
|
33 |
+
|
34 |
+
If your issue looks like an installation issue / environment issue,
|
35 |
+
please first try to solve it yourself with the instructions in
|
36 |
+
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# require an issue template to be chosen
|
2 |
+
blank_issues_enabled: false
|
3 |
+
|
4 |
+
# Unexpected behaviors & bugs are split to two templates.
|
5 |
+
# When they are one template, users think "it's not a bug" and don't choose the template.
|
6 |
+
#
|
7 |
+
# But the file name is still "unexpected-problems-bugs.md" so that old references
|
8 |
+
# to this issue template still works.
|
9 |
+
# It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "\U0001F680Feature Request"
|
3 |
+
about: Submit a proposal/request for a new detectron2 feature
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## π Feature
|
8 |
+
A clear and concise description of the feature proposal.
|
9 |
+
|
10 |
+
|
11 |
+
## Motivation & Examples
|
12 |
+
|
13 |
+
Tell us why the feature is useful.
|
14 |
+
|
15 |
+
Describe what the feature would look like, if it is implemented.
|
16 |
+
Best demonstrated using **code examples** in addition to words.
|
17 |
+
|
18 |
+
## Note
|
19 |
+
|
20 |
+
We only consider adding new features if they are relevant to many users.
|
21 |
+
|
22 |
+
If you request implementation of research papers --
|
23 |
+
we only consider papers that have enough significance and prevalance in the object detection field.
|
24 |
+
|
25 |
+
We do not take requests for most projects in the `projects/` directory,
|
26 |
+
because they are research code release that is mainly for other researchers to reproduce results.
|
27 |
+
|
28 |
+
Instead of adding features inside detectron2,
|
29 |
+
you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
|
30 |
+
The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
|
31 |
+
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "βHow to do something?"
|
3 |
+
about: How to do something using detectron2? What does an API do?
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## β How to do something using detectron2
|
8 |
+
|
9 |
+
Describe what you want to do, including:
|
10 |
+
1. what inputs you will provide, if any:
|
11 |
+
2. what outputs you are expecting:
|
12 |
+
|
13 |
+
## β What does an API do and how to use it?
|
14 |
+
Please link to which API or documentation you're asking about from
|
15 |
+
https://detectron2.readthedocs.io/
|
16 |
+
|
17 |
+
|
18 |
+
NOTE:
|
19 |
+
|
20 |
+
1. Only general answers are provided.
|
21 |
+
If you want to ask about "why X did not work", please use the
|
22 |
+
[Unexpected behaviors](https://github.com/facebookresearch/detectron2/issues/new/choose) issue template.
|
23 |
+
|
24 |
+
2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
|
25 |
+
|
26 |
+
3. We do not answer general machine learning / computer vision questions that are not specific to detectron2, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "Unexpected behaviors"
|
3 |
+
about: Run into unexpected behaviors when using detectron2
|
4 |
+
title: Please read & provide the following
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
If you do not know the root cause of the problem, and wish someone to help you, please
|
9 |
+
post according to this template:
|
10 |
+
|
11 |
+
## Instructions To Reproduce the Issue:
|
12 |
+
|
13 |
+
1. what changes you made (`git diff`) or what code you wrote
|
14 |
+
```
|
15 |
+
<put diff or code here>
|
16 |
+
```
|
17 |
+
2. what exact command you run:
|
18 |
+
3. what you observed (including __full logs__):
|
19 |
+
```
|
20 |
+
<put logs here>
|
21 |
+
```
|
22 |
+
4. please simplify the steps as much as possible so they do not require additional resources to
|
23 |
+
run, such as a private dataset.
|
24 |
+
|
25 |
+
## Expected behavior:
|
26 |
+
|
27 |
+
If there are no obvious error in "what you observed" provided above,
|
28 |
+
please tell us the expected behavior.
|
29 |
+
|
30 |
+
If you expect the model to converge / work better, note that we do not give suggestions
|
31 |
+
on how to train a new model.
|
32 |
+
Only in one of the two conditions we will help with it:
|
33 |
+
(1) You're unable to reproduce the results in detectron2 model zoo.
|
34 |
+
(2) It indicates a detectron2 bug.
|
35 |
+
|
36 |
+
## Environment:
|
37 |
+
|
38 |
+
Provide your environment information using the following command:
|
39 |
+
```
|
40 |
+
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
|
41 |
+
```
|
42 |
+
|
43 |
+
If your issue looks like an installation issue / environment issue,
|
44 |
+
please first try to solve it yourself with the instructions in
|
45 |
+
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Thanks for your contribution!
|
2 |
+
|
3 |
+
If you're sending a large PR (e.g., >50 lines),
|
4 |
+
please open an issue first about the feature / bug, and indicate how you want to contribute.
|
5 |
+
|
6 |
+
Before submitting a PR, please run `dev/linter.sh` to lint the code.
|
7 |
+
|
8 |
+
See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests
|
9 |
+
about how we handle PRs.
|
preprocess/humanparsing/mhp_extension/detectron2/.gitignore
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# output dir
|
2 |
+
output
|
3 |
+
instant_test_output
|
4 |
+
inference_test_output
|
5 |
+
|
6 |
+
|
7 |
+
*.jpg
|
8 |
+
*.png
|
9 |
+
*.txt
|
10 |
+
*.json
|
11 |
+
*.diff
|
12 |
+
|
13 |
+
# compilation and distribution
|
14 |
+
__pycache__
|
15 |
+
_ext
|
16 |
+
*.pyc
|
17 |
+
*.so
|
18 |
+
detectron2.egg-info/
|
19 |
+
build/
|
20 |
+
dist/
|
21 |
+
wheels/
|
22 |
+
|
23 |
+
# pytorch/python/numpy formats
|
24 |
+
*.pth
|
25 |
+
*.pkl
|
26 |
+
*.npy
|
27 |
+
|
28 |
+
# ipython/jupyter notebooks
|
29 |
+
*.ipynb
|
30 |
+
**/.ipynb_checkpoints/
|
31 |
+
|
32 |
+
# Editor temporaries
|
33 |
+
*.swn
|
34 |
+
*.swo
|
35 |
+
*.swp
|
36 |
+
*~
|
37 |
+
|
38 |
+
# editor settings
|
39 |
+
.idea
|
40 |
+
.vscode
|
41 |
+
|
42 |
+
# project dirs
|
43 |
+
/detectron2/model_zoo/configs
|
44 |
+
/datasets
|
45 |
+
/projects/*/datasets
|
46 |
+
/models
|
preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Getting Started with Detectron2
|
2 |
+
|
3 |
+
This document provides a brief intro of the usage of builtin command-line tools in detectron2.
|
4 |
+
|
5 |
+
For a tutorial that involves actual coding with the API,
|
6 |
+
see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
7 |
+
which covers how to run inference with an
|
8 |
+
existing model, and how to train a builtin model on a custom dataset.
|
9 |
+
|
10 |
+
For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
|
11 |
+
|
12 |
+
|
13 |
+
### Inference Demo with Pre-trained Models
|
14 |
+
|
15 |
+
1. Pick a model and its config file from
|
16 |
+
[model zoo](MODEL_ZOO.md),
|
17 |
+
for example, `mask_rcnn_R_50_FPN_3x.yaml`.
|
18 |
+
2. We provide `demo.py` that is able to run builtin standard models. Run it with:
|
19 |
+
```
|
20 |
+
cd demo/
|
21 |
+
python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
|
22 |
+
--input input1.jpg input2.jpg \
|
23 |
+
[--other-options]
|
24 |
+
--opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
|
25 |
+
```
|
26 |
+
The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
|
27 |
+
This command will run the inference and show visualizations in an OpenCV window.
|
28 |
+
|
29 |
+
For details of the command line arguments, see `demo.py -h` or look at its source code
|
30 |
+
to understand its behavior. Some common arguments are:
|
31 |
+
* To run __on your webcam__, replace `--input files` with `--webcam`.
|
32 |
+
* To run __on a video__, replace `--input files` with `--video-input video.mp4`.
|
33 |
+
* To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
|
34 |
+
* To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
|
35 |
+
|
36 |
+
|
37 |
+
### Training & Evaluation in Command Line
|
38 |
+
|
39 |
+
We provide a script in "tools/{,plain_}train_net.py", that is made to train
|
40 |
+
all the configs provided in detectron2.
|
41 |
+
You may want to use it as a reference to write your own training script.
|
42 |
+
|
43 |
+
To train a model with "train_net.py", first
|
44 |
+
setup the corresponding datasets following
|
45 |
+
[datasets/README.md](./datasets/README.md),
|
46 |
+
then run:
|
47 |
+
```
|
48 |
+
cd tools/
|
49 |
+
./train_net.py --num-gpus 8 \
|
50 |
+
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
|
51 |
+
```
|
52 |
+
|
53 |
+
The configs are made for 8-GPU training.
|
54 |
+
To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
|
55 |
+
```
|
56 |
+
./train_net.py \
|
57 |
+
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
58 |
+
--num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
|
59 |
+
```
|
60 |
+
|
61 |
+
For most models, CPU training is not supported.
|
62 |
+
|
63 |
+
To evaluate a model's performance, use
|
64 |
+
```
|
65 |
+
./train_net.py \
|
66 |
+
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
67 |
+
--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
|
68 |
+
```
|
69 |
+
For more options, see `./train_net.py -h`.
|
70 |
+
|
71 |
+
### Use Detectron2 APIs in Your Code
|
72 |
+
|
73 |
+
See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
74 |
+
to learn how to use detectron2 APIs to:
|
75 |
+
1. run inference with an existing model
|
76 |
+
2. train a builtin model on a custom dataset
|
77 |
+
|
78 |
+
See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
|
79 |
+
for more ways to build your project on detectron2.
|
preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Installation
|
2 |
+
|
3 |
+
Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
4 |
+
has step-by-step instructions that install detectron2.
|
5 |
+
The [Dockerfile](docker)
|
6 |
+
also installs detectron2 with a few simple commands.
|
7 |
+
|
8 |
+
### Requirements
|
9 |
+
- Linux or macOS with Python β₯ 3.6
|
10 |
+
- PyTorch β₯ 1.4
|
11 |
+
- [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
|
12 |
+
You can install them together at [pytorch.org](https://pytorch.org) to make sure of this.
|
13 |
+
- OpenCV, optional, needed by demo and visualization
|
14 |
+
- pycocotools: `pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'`
|
15 |
+
|
16 |
+
|
17 |
+
### Build Detectron2 from Source
|
18 |
+
|
19 |
+
gcc & g++ β₯ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
|
20 |
+
After having them, run:
|
21 |
+
```
|
22 |
+
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
|
23 |
+
# (add --user if you don't have permission)
|
24 |
+
|
25 |
+
# Or, to install it from a local clone:
|
26 |
+
git clone https://github.com/facebookresearch/detectron2.git
|
27 |
+
python -m pip install -e detectron2
|
28 |
+
|
29 |
+
# Or if you are on macOS
|
30 |
+
# CC=clang CXX=clang++ python -m pip install -e .
|
31 |
+
```
|
32 |
+
|
33 |
+
To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
|
34 |
+
old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
|
35 |
+
|
36 |
+
### Install Pre-Built Detectron2 (Linux only)
|
37 |
+
```
|
38 |
+
# for CUDA 10.1:
|
39 |
+
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html
|
40 |
+
```
|
41 |
+
You can replace cu101 with "cu{100,92}" or "cpu".
|
42 |
+
|
43 |
+
Note that:
|
44 |
+
1. Such installation has to be used with certain version of official PyTorch release.
|
45 |
+
See [releases](https://github.com/facebookresearch/detectron2/releases) for requirements.
|
46 |
+
It will not work with a different version of PyTorch or a non-official build of PyTorch.
|
47 |
+
2. Such installation is out-of-date w.r.t. master branch of detectron2. It may not be
|
48 |
+
compatible with the master branch of a research project that uses detectron2 (e.g. those in
|
49 |
+
[projects](projects) or [meshrcnn](https://github.com/facebookresearch/meshrcnn/)).
|
50 |
+
|
51 |
+
### Common Installation Issues
|
52 |
+
|
53 |
+
If you met issues using the pre-built detectron2, please uninstall it and try building it from source.
|
54 |
+
|
55 |
+
Click each issue for its solutions:
|
56 |
+
|
57 |
+
<details>
|
58 |
+
<summary>
|
59 |
+
Undefined torch/aten/caffe2 symbols, or segmentation fault immediately when running the library.
|
60 |
+
</summary>
|
61 |
+
<br/>
|
62 |
+
|
63 |
+
This usually happens when detectron2 or torchvision is not
|
64 |
+
compiled with the version of PyTorch you're running.
|
65 |
+
|
66 |
+
Pre-built torchvision or detectron2 has to work with the corresponding official release of pytorch.
|
67 |
+
If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
|
68 |
+
following [pytorch.org](http://pytorch.org). So the versions will match.
|
69 |
+
|
70 |
+
If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
|
71 |
+
to see the corresponding pytorch version required for each pre-built detectron2.
|
72 |
+
|
73 |
+
If the error comes from detectron2 or torchvision that you built manually from source,
|
74 |
+
remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
|
75 |
+
|
76 |
+
If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
|
77 |
+
in your issue.
|
78 |
+
</details>
|
79 |
+
|
80 |
+
<details>
|
81 |
+
<summary>
|
82 |
+
Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
|
83 |
+
</summary>
|
84 |
+
<br/>
|
85 |
+
Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
|
86 |
+
|
87 |
+
This often happens with old anaconda.
|
88 |
+
Try `conda update libgcc`. Then rebuild detectron2.
|
89 |
+
|
90 |
+
The fundamental solution is to run the code with proper C++ runtime.
|
91 |
+
One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
|
92 |
+
|
93 |
+
</details>
|
94 |
+
|
95 |
+
<details>
|
96 |
+
<summary>
|
97 |
+
"Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
|
98 |
+
</summary>
|
99 |
+
<br/>
|
100 |
+
CUDA is not found when building detectron2.
|
101 |
+
You should make sure
|
102 |
+
|
103 |
+
```
|
104 |
+
python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
|
105 |
+
```
|
106 |
+
|
107 |
+
print valid outputs at the time you build detectron2.
|
108 |
+
|
109 |
+
Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
|
110 |
+
</details>
|
111 |
+
|
112 |
+
<details>
|
113 |
+
<summary>
|
114 |
+
"invalid device function" or "no kernel image is available for execution".
|
115 |
+
</summary>
|
116 |
+
<br/>
|
117 |
+
Two possibilities:
|
118 |
+
|
119 |
+
* You build detectron2 with one version of CUDA but run it with a different version.
|
120 |
+
|
121 |
+
To check whether it is the case,
|
122 |
+
use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
123 |
+
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
124 |
+
to contain cuda libraries of the same version.
|
125 |
+
|
126 |
+
When they are inconsistent,
|
127 |
+
you need to either install a different build of PyTorch (or build by yourself)
|
128 |
+
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
129 |
+
|
130 |
+
* Detectron2 or PyTorch/torchvision is not built for the correct GPU architecture (compute compatibility).
|
131 |
+
|
132 |
+
The GPU architecture for PyTorch/detectron2/torchvision is available in the "architecture flags" in
|
133 |
+
`python -m detectron2.utils.collect_env`.
|
134 |
+
|
135 |
+
The GPU architecture flags of detectron2/torchvision by default matches the GPU model detected
|
136 |
+
during compilation. This means the compiled code may not work on a different GPU model.
|
137 |
+
To overwrite the GPU architecture for detectron2/torchvision, use `TORCH_CUDA_ARCH_LIST` environment variable during compilation.
|
138 |
+
|
139 |
+
For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
|
140 |
+
Visit [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) to find out
|
141 |
+
the correct compute compatibility number for your device.
|
142 |
+
|
143 |
+
</details>
|
144 |
+
|
145 |
+
<details>
|
146 |
+
<summary>
|
147 |
+
Undefined CUDA symbols; cannot open libcudart.so; other nvcc failures.
|
148 |
+
</summary>
|
149 |
+
<br/>
|
150 |
+
The version of NVCC you use to build detectron2 or torchvision does
|
151 |
+
not match the version of CUDA you are running with.
|
152 |
+
This often happens when using anaconda's CUDA runtime.
|
153 |
+
|
154 |
+
Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
155 |
+
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
156 |
+
to contain cuda libraries of the same version.
|
157 |
+
|
158 |
+
When they are inconsistent,
|
159 |
+
you need to either install a different build of PyTorch (or build by yourself)
|
160 |
+
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
161 |
+
</details>
|
162 |
+
|
163 |
+
|
164 |
+
<details>
|
165 |
+
<summary>
|
166 |
+
"ImportError: cannot import name '_C'".
|
167 |
+
</summary>
|
168 |
+
<br/>
|
169 |
+
Please build and install detectron2 following the instructions above.
|
170 |
+
|
171 |
+
If you are running code from detectron2's root directory, `cd` to a different one.
|
172 |
+
Otherwise you may not import the code that you installed.
|
173 |
+
</details>
|
174 |
+
|
175 |
+
<details>
|
176 |
+
<summary>
|
177 |
+
ONNX conversion segfault after some "TraceWarning".
|
178 |
+
</summary>
|
179 |
+
<br/>
|
180 |
+
The ONNX package is compiled with too old compiler.
|
181 |
+
|
182 |
+
Please build and install ONNX from its source code using a compiler
|
183 |
+
whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
|
184 |
+
</details>
|
preprocess/humanparsing/mhp_extension/detectron2/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2019 - present, Facebook, Inc
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md
ADDED
@@ -0,0 +1,903 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Detectron2 Model Zoo and Baselines
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
This file documents a large collection of baselines trained
|
6 |
+
with detectron2 in Sep-Oct, 2019.
|
7 |
+
All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
|
8 |
+
servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
|
9 |
+
You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
|
10 |
+
|
11 |
+
In addition to these official baseline models, you can find more models in [projects/](projects/).
|
12 |
+
|
13 |
+
#### How to Read the Tables
|
14 |
+
* The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file
|
15 |
+
and 8 GPUs will reproduce the model.
|
16 |
+
* Training speed is averaged across the entire training.
|
17 |
+
We keep updating the speed with latest version of detectron2/pytorch/etc.,
|
18 |
+
so they might be different from the `metrics` file.
|
19 |
+
Training speed for multi-machine jobs is not provided.
|
20 |
+
* Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
|
21 |
+
with batch size 1 in detectron2 directly.
|
22 |
+
Measuring it with your own code will likely introduce other overhead.
|
23 |
+
Actual deployment in production should in general be faster than the given inference
|
24 |
+
speed due to more optimizations.
|
25 |
+
* The *model id* column is provided for ease of reference.
|
26 |
+
To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
|
27 |
+
* Training curves and other statistics can be found in `metrics` for each model.
|
28 |
+
|
29 |
+
#### Common Settings for COCO Models
|
30 |
+
* All COCO models were trained on `train2017` and evaluated on `val2017`.
|
31 |
+
* The default settings are __not directly comparable__ with Detectron's standard settings.
|
32 |
+
For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
|
33 |
+
|
34 |
+
To make fair comparisons with Detectron's settings, see
|
35 |
+
[Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
|
36 |
+
and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
|
37 |
+
for speed comparison.
|
38 |
+
* For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
|
39 |
+
* __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
|
40 |
+
respectively. It obtains the best
|
41 |
+
speed/accuracy tradeoff, but the other two are still useful for research.
|
42 |
+
* __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
|
43 |
+
* __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
|
44 |
+
for mask and box prediction, respectively.
|
45 |
+
This is used by the Deformable ConvNet paper.
|
46 |
+
* Most models are trained with the 3x schedule (~37 COCO epochs).
|
47 |
+
Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
|
48 |
+
training schedule for comparison when doing quick research iteration.
|
49 |
+
|
50 |
+
#### ImageNet Pretrained Models
|
51 |
+
|
52 |
+
We provide backbone models pretrained on ImageNet-1k dataset.
|
53 |
+
These models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
|
54 |
+
* [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
|
55 |
+
* [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
|
56 |
+
* [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
|
57 |
+
|
58 |
+
Pretrained models in Detectron's format can still be used. For example:
|
59 |
+
* [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
|
60 |
+
ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
|
61 |
+
* [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
|
62 |
+
ResNet-50 with Group Normalization.
|
63 |
+
* [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
|
64 |
+
ResNet-101 with Group Normalization.
|
65 |
+
|
66 |
+
Torchvision's ResNet models can be used after converted by [this script](tools/convert-torchvision-to-d2.py).
|
67 |
+
|
68 |
+
#### License
|
69 |
+
|
70 |
+
All models available for download through this document are licensed under the
|
71 |
+
[Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
|
72 |
+
|
73 |
+
### COCO Object Detection Baselines
|
74 |
+
|
75 |
+
#### Faster R-CNN:
|
76 |
+
<!--
|
77 |
+
(fb only) To update the table in vim:
|
78 |
+
1. Remove the old table: d}
|
79 |
+
2. Copy the below command to the place of the table
|
80 |
+
3. :.!bash
|
81 |
+
|
82 |
+
./gen_html_table.py --config 'COCO-Detection/faster*50*'{1x,3x}'*' 'COCO-Detection/faster*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP
|
83 |
+
-->
|
84 |
+
|
85 |
+
|
86 |
+
<table><tbody>
|
87 |
+
<!-- START TABLE -->
|
88 |
+
<!-- TABLE HEADER -->
|
89 |
+
<th valign="bottom">Name</th>
|
90 |
+
<th valign="bottom">lr<br/>sched</th>
|
91 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
92 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
93 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
94 |
+
<th valign="bottom">box<br/>AP</th>
|
95 |
+
<th valign="bottom">model id</th>
|
96 |
+
<th valign="bottom">download</th>
|
97 |
+
<!-- TABLE BODY -->
|
98 |
+
<!-- ROW: faster_rcnn_R_50_C4_1x -->
|
99 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
100 |
+
<td align="center">1x</td>
|
101 |
+
<td align="center">0.551</td>
|
102 |
+
<td align="center">0.102</td>
|
103 |
+
<td align="center">4.8</td>
|
104 |
+
<td align="center">35.7</td>
|
105 |
+
<td align="center">137257644</td>
|
106 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/metrics.json">metrics</a></td>
|
107 |
+
</tr>
|
108 |
+
<!-- ROW: faster_rcnn_R_50_DC5_1x -->
|
109 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
110 |
+
<td align="center">1x</td>
|
111 |
+
<td align="center">0.380</td>
|
112 |
+
<td align="center">0.068</td>
|
113 |
+
<td align="center">5.0</td>
|
114 |
+
<td align="center">37.3</td>
|
115 |
+
<td align="center">137847829</td>
|
116 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/metrics.json">metrics</a></td>
|
117 |
+
</tr>
|
118 |
+
<!-- ROW: faster_rcnn_R_50_FPN_1x -->
|
119 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
120 |
+
<td align="center">1x</td>
|
121 |
+
<td align="center">0.210</td>
|
122 |
+
<td align="center">0.038</td>
|
123 |
+
<td align="center">3.0</td>
|
124 |
+
<td align="center">37.9</td>
|
125 |
+
<td align="center">137257794</td>
|
126 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/metrics.json">metrics</a></td>
|
127 |
+
</tr>
|
128 |
+
<!-- ROW: faster_rcnn_R_50_C4_3x -->
|
129 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
130 |
+
<td align="center">3x</td>
|
131 |
+
<td align="center">0.543</td>
|
132 |
+
<td align="center">0.104</td>
|
133 |
+
<td align="center">4.8</td>
|
134 |
+
<td align="center">38.4</td>
|
135 |
+
<td align="center">137849393</td>
|
136 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/model_final_f97cb7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/metrics.json">metrics</a></td>
|
137 |
+
</tr>
|
138 |
+
<!-- ROW: faster_rcnn_R_50_DC5_3x -->
|
139 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
140 |
+
<td align="center">3x</td>
|
141 |
+
<td align="center">0.378</td>
|
142 |
+
<td align="center">0.070</td>
|
143 |
+
<td align="center">5.0</td>
|
144 |
+
<td align="center">39.0</td>
|
145 |
+
<td align="center">137849425</td>
|
146 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/model_final_68d202.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/metrics.json">metrics</a></td>
|
147 |
+
</tr>
|
148 |
+
<!-- ROW: faster_rcnn_R_50_FPN_3x -->
|
149 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
150 |
+
<td align="center">3x</td>
|
151 |
+
<td align="center">0.209</td>
|
152 |
+
<td align="center">0.038</td>
|
153 |
+
<td align="center">3.0</td>
|
154 |
+
<td align="center">40.2</td>
|
155 |
+
<td align="center">137849458</td>
|
156 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json">metrics</a></td>
|
157 |
+
</tr>
|
158 |
+
<!-- ROW: faster_rcnn_R_101_C4_3x -->
|
159 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
160 |
+
<td align="center">3x</td>
|
161 |
+
<td align="center">0.619</td>
|
162 |
+
<td align="center">0.139</td>
|
163 |
+
<td align="center">5.9</td>
|
164 |
+
<td align="center">41.1</td>
|
165 |
+
<td align="center">138204752</td>
|
166 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/metrics.json">metrics</a></td>
|
167 |
+
</tr>
|
168 |
+
<!-- ROW: faster_rcnn_R_101_DC5_3x -->
|
169 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
170 |
+
<td align="center">3x</td>
|
171 |
+
<td align="center">0.452</td>
|
172 |
+
<td align="center">0.086</td>
|
173 |
+
<td align="center">6.1</td>
|
174 |
+
<td align="center">40.6</td>
|
175 |
+
<td align="center">138204841</td>
|
176 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/metrics.json">metrics</a></td>
|
177 |
+
</tr>
|
178 |
+
<!-- ROW: faster_rcnn_R_101_FPN_3x -->
|
179 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
180 |
+
<td align="center">3x</td>
|
181 |
+
<td align="center">0.286</td>
|
182 |
+
<td align="center">0.051</td>
|
183 |
+
<td align="center">4.1</td>
|
184 |
+
<td align="center">42.0</td>
|
185 |
+
<td align="center">137851257</td>
|
186 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/metrics.json">metrics</a></td>
|
187 |
+
</tr>
|
188 |
+
<!-- ROW: faster_rcnn_X_101_32x8d_FPN_3x -->
|
189 |
+
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
190 |
+
<td align="center">3x</td>
|
191 |
+
<td align="center">0.638</td>
|
192 |
+
<td align="center">0.098</td>
|
193 |
+
<td align="center">6.7</td>
|
194 |
+
<td align="center">43.0</td>
|
195 |
+
<td align="center">139173657</td>
|
196 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/metrics.json">metrics</a></td>
|
197 |
+
</tr>
|
198 |
+
</tbody></table>
|
199 |
+
|
200 |
+
#### RetinaNet:
|
201 |
+
<!--
|
202 |
+
./gen_html_table.py --config 'COCO-Detection/retina*50*' 'COCO-Detection/retina*101*' --name R50 R50 R101 --fields lr_sched train_speed inference_speed mem box_AP
|
203 |
+
-->
|
204 |
+
|
205 |
+
|
206 |
+
<table><tbody>
|
207 |
+
<!-- START TABLE -->
|
208 |
+
<!-- TABLE HEADER -->
|
209 |
+
<th valign="bottom">Name</th>
|
210 |
+
<th valign="bottom">lr<br/>sched</th>
|
211 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
212 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
213 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
214 |
+
<th valign="bottom">box<br/>AP</th>
|
215 |
+
<th valign="bottom">model id</th>
|
216 |
+
<th valign="bottom">download</th>
|
217 |
+
<!-- TABLE BODY -->
|
218 |
+
<!-- ROW: retinanet_R_50_FPN_1x -->
|
219 |
+
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml">R50</a></td>
|
220 |
+
<td align="center">1x</td>
|
221 |
+
<td align="center">0.200</td>
|
222 |
+
<td align="center">0.055</td>
|
223 |
+
<td align="center">3.9</td>
|
224 |
+
<td align="center">36.5</td>
|
225 |
+
<td align="center">137593951</td>
|
226 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/model_final_b796dc.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/metrics.json">metrics</a></td>
|
227 |
+
</tr>
|
228 |
+
<!-- ROW: retinanet_R_50_FPN_3x -->
|
229 |
+
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml">R50</a></td>
|
230 |
+
<td align="center">3x</td>
|
231 |
+
<td align="center">0.201</td>
|
232 |
+
<td align="center">0.055</td>
|
233 |
+
<td align="center">3.9</td>
|
234 |
+
<td align="center">37.9</td>
|
235 |
+
<td align="center">137849486</td>
|
236 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/metrics.json">metrics</a></td>
|
237 |
+
</tr>
|
238 |
+
<!-- ROW: retinanet_R_101_FPN_3x -->
|
239 |
+
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml">R101</a></td>
|
240 |
+
<td align="center">3x</td>
|
241 |
+
<td align="center">0.280</td>
|
242 |
+
<td align="center">0.068</td>
|
243 |
+
<td align="center">5.1</td>
|
244 |
+
<td align="center">39.9</td>
|
245 |
+
<td align="center">138363263</td>
|
246 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/model_final_59f53c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/metrics.json">metrics</a></td>
|
247 |
+
</tr>
|
248 |
+
</tbody></table>
|
249 |
+
|
250 |
+
#### RPN & Fast R-CNN:
|
251 |
+
<!--
|
252 |
+
./gen_html_table.py --config 'COCO-Detection/rpn*' 'COCO-Detection/fast_rcnn*' --name "RPN R50-C4" "RPN R50-FPN" "Fast R-CNN R50-FPN" --fields lr_sched train_speed inference_speed mem box_AP prop_AR
|
253 |
+
-->
|
254 |
+
|
255 |
+
<table><tbody>
|
256 |
+
<!-- START TABLE -->
|
257 |
+
<!-- TABLE HEADER -->
|
258 |
+
<th valign="bottom">Name</th>
|
259 |
+
<th valign="bottom">lr<br/>sched</th>
|
260 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
261 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
262 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
263 |
+
<th valign="bottom">box<br/>AP</th>
|
264 |
+
<th valign="bottom">prop.<br/>AR</th>
|
265 |
+
<th valign="bottom">model id</th>
|
266 |
+
<th valign="bottom">download</th>
|
267 |
+
<!-- TABLE BODY -->
|
268 |
+
<!-- ROW: rpn_R_50_C4_1x -->
|
269 |
+
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_C4_1x.yaml">RPN R50-C4</a></td>
|
270 |
+
<td align="center">1x</td>
|
271 |
+
<td align="center">0.130</td>
|
272 |
+
<td align="center">0.034</td>
|
273 |
+
<td align="center">1.5</td>
|
274 |
+
<td align="center"></td>
|
275 |
+
<td align="center">51.6</td>
|
276 |
+
<td align="center">137258005</td>
|
277 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/model_final_450694.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/metrics.json">metrics</a></td>
|
278 |
+
</tr>
|
279 |
+
<!-- ROW: rpn_R_50_FPN_1x -->
|
280 |
+
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_FPN_1x.yaml">RPN R50-FPN</a></td>
|
281 |
+
<td align="center">1x</td>
|
282 |
+
<td align="center">0.186</td>
|
283 |
+
<td align="center">0.032</td>
|
284 |
+
<td align="center">2.7</td>
|
285 |
+
<td align="center"></td>
|
286 |
+
<td align="center">58.0</td>
|
287 |
+
<td align="center">137258492</td>
|
288 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/metrics.json">metrics</a></td>
|
289 |
+
</tr>
|
290 |
+
<!-- ROW: fast_rcnn_R_50_FPN_1x -->
|
291 |
+
<tr><td align="left"><a href="configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml">Fast R-CNN R50-FPN</a></td>
|
292 |
+
<td align="center">1x</td>
|
293 |
+
<td align="center">0.140</td>
|
294 |
+
<td align="center">0.029</td>
|
295 |
+
<td align="center">2.6</td>
|
296 |
+
<td align="center">37.8</td>
|
297 |
+
<td align="center"></td>
|
298 |
+
<td align="center">137635226</td>
|
299 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/metrics.json">metrics</a></td>
|
300 |
+
</tr>
|
301 |
+
</tbody></table>
|
302 |
+
|
303 |
+
### COCO Instance Segmentation Baselines with Mask R-CNN
|
304 |
+
<!--
|
305 |
+
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask*50*'{1x,3x}'*' 'COCO-InstanceSegmentation/mask*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
306 |
+
-->
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
<table><tbody>
|
311 |
+
<!-- START TABLE -->
|
312 |
+
<!-- TABLE HEADER -->
|
313 |
+
<th valign="bottom">Name</th>
|
314 |
+
<th valign="bottom">lr<br/>sched</th>
|
315 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
316 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
317 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
318 |
+
<th valign="bottom">box<br/>AP</th>
|
319 |
+
<th valign="bottom">mask<br/>AP</th>
|
320 |
+
<th valign="bottom">model id</th>
|
321 |
+
<th valign="bottom">download</th>
|
322 |
+
<!-- TABLE BODY -->
|
323 |
+
<!-- ROW: mask_rcnn_R_50_C4_1x -->
|
324 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
325 |
+
<td align="center">1x</td>
|
326 |
+
<td align="center">0.584</td>
|
327 |
+
<td align="center">0.110</td>
|
328 |
+
<td align="center">5.2</td>
|
329 |
+
<td align="center">36.8</td>
|
330 |
+
<td align="center">32.2</td>
|
331 |
+
<td align="center">137259246</td>
|
332 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/metrics.json">metrics</a></td>
|
333 |
+
</tr>
|
334 |
+
<!-- ROW: mask_rcnn_R_50_DC5_1x -->
|
335 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
336 |
+
<td align="center">1x</td>
|
337 |
+
<td align="center">0.471</td>
|
338 |
+
<td align="center">0.076</td>
|
339 |
+
<td align="center">6.5</td>
|
340 |
+
<td align="center">38.3</td>
|
341 |
+
<td align="center">34.2</td>
|
342 |
+
<td align="center">137260150</td>
|
343 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/model_final_4f86c3.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/metrics.json">metrics</a></td>
|
344 |
+
</tr>
|
345 |
+
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
346 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
347 |
+
<td align="center">1x</td>
|
348 |
+
<td align="center">0.261</td>
|
349 |
+
<td align="center">0.043</td>
|
350 |
+
<td align="center">3.4</td>
|
351 |
+
<td align="center">38.6</td>
|
352 |
+
<td align="center">35.2</td>
|
353 |
+
<td align="center">137260431</td>
|
354 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
355 |
+
</tr>
|
356 |
+
<!-- ROW: mask_rcnn_R_50_C4_3x -->
|
357 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
358 |
+
<td align="center">3x</td>
|
359 |
+
<td align="center">0.575</td>
|
360 |
+
<td align="center">0.111</td>
|
361 |
+
<td align="center">5.2</td>
|
362 |
+
<td align="center">39.8</td>
|
363 |
+
<td align="center">34.4</td>
|
364 |
+
<td align="center">137849525</td>
|
365 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/metrics.json">metrics</a></td>
|
366 |
+
</tr>
|
367 |
+
<!-- ROW: mask_rcnn_R_50_DC5_3x -->
|
368 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
369 |
+
<td align="center">3x</td>
|
370 |
+
<td align="center">0.470</td>
|
371 |
+
<td align="center">0.076</td>
|
372 |
+
<td align="center">6.5</td>
|
373 |
+
<td align="center">40.0</td>
|
374 |
+
<td align="center">35.9</td>
|
375 |
+
<td align="center">137849551</td>
|
376 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/metrics.json">metrics</a></td>
|
377 |
+
</tr>
|
378 |
+
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
379 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
380 |
+
<td align="center">3x</td>
|
381 |
+
<td align="center">0.261</td>
|
382 |
+
<td align="center">0.043</td>
|
383 |
+
<td align="center">3.4</td>
|
384 |
+
<td align="center">41.0</td>
|
385 |
+
<td align="center">37.2</td>
|
386 |
+
<td align="center">137849600</td>
|
387 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
388 |
+
</tr>
|
389 |
+
<!-- ROW: mask_rcnn_R_101_C4_3x -->
|
390 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
391 |
+
<td align="center">3x</td>
|
392 |
+
<td align="center">0.652</td>
|
393 |
+
<td align="center">0.145</td>
|
394 |
+
<td align="center">6.3</td>
|
395 |
+
<td align="center">42.6</td>
|
396 |
+
<td align="center">36.7</td>
|
397 |
+
<td align="center">138363239</td>
|
398 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/metrics.json">metrics</a></td>
|
399 |
+
</tr>
|
400 |
+
<!-- ROW: mask_rcnn_R_101_DC5_3x -->
|
401 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
402 |
+
<td align="center">3x</td>
|
403 |
+
<td align="center">0.545</td>
|
404 |
+
<td align="center">0.092</td>
|
405 |
+
<td align="center">7.6</td>
|
406 |
+
<td align="center">41.9</td>
|
407 |
+
<td align="center">37.3</td>
|
408 |
+
<td align="center">138363294</td>
|
409 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/model_final_0464b7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/metrics.json">metrics</a></td>
|
410 |
+
</tr>
|
411 |
+
<!-- ROW: mask_rcnn_R_101_FPN_3x -->
|
412 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
413 |
+
<td align="center">3x</td>
|
414 |
+
<td align="center">0.340</td>
|
415 |
+
<td align="center">0.056</td>
|
416 |
+
<td align="center">4.6</td>
|
417 |
+
<td align="center">42.9</td>
|
418 |
+
<td align="center">38.6</td>
|
419 |
+
<td align="center">138205316</td>
|
420 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/metrics.json">metrics</a></td>
|
421 |
+
</tr>
|
422 |
+
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_3x -->
|
423 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
424 |
+
<td align="center">3x</td>
|
425 |
+
<td align="center">0.690</td>
|
426 |
+
<td align="center">0.103</td>
|
427 |
+
<td align="center">7.2</td>
|
428 |
+
<td align="center">44.3</td>
|
429 |
+
<td align="center">39.5</td>
|
430 |
+
<td align="center">139653917</td>
|
431 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/model_final_2d9806.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/metrics.json">metrics</a></td>
|
432 |
+
</tr>
|
433 |
+
</tbody></table>
|
434 |
+
|
435 |
+
### COCO Person Keypoint Detection Baselines with Keypoint R-CNN
|
436 |
+
<!--
|
437 |
+
./gen_html_table.py --config 'COCO-Keypoints/*50*' 'COCO-Keypoints/*101*' --name R50-FPN R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP keypoint_AP
|
438 |
+
-->
|
439 |
+
|
440 |
+
|
441 |
+
<table><tbody>
|
442 |
+
<!-- START TABLE -->
|
443 |
+
<!-- TABLE HEADER -->
|
444 |
+
<th valign="bottom">Name</th>
|
445 |
+
<th valign="bottom">lr<br/>sched</th>
|
446 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
447 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
448 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
449 |
+
<th valign="bottom">box<br/>AP</th>
|
450 |
+
<th valign="bottom">kp.<br/>AP</th>
|
451 |
+
<th valign="bottom">model id</th>
|
452 |
+
<th valign="bottom">download</th>
|
453 |
+
<!-- TABLE BODY -->
|
454 |
+
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
455 |
+
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
456 |
+
<td align="center">1x</td>
|
457 |
+
<td align="center">0.315</td>
|
458 |
+
<td align="center">0.072</td>
|
459 |
+
<td align="center">5.0</td>
|
460 |
+
<td align="center">53.6</td>
|
461 |
+
<td align="center">64.0</td>
|
462 |
+
<td align="center">137261548</td>
|
463 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/model_final_04e291.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/metrics.json">metrics</a></td>
|
464 |
+
</tr>
|
465 |
+
<!-- ROW: keypoint_rcnn_R_50_FPN_3x -->
|
466 |
+
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
467 |
+
<td align="center">3x</td>
|
468 |
+
<td align="center">0.316</td>
|
469 |
+
<td align="center">0.066</td>
|
470 |
+
<td align="center">5.0</td>
|
471 |
+
<td align="center">55.4</td>
|
472 |
+
<td align="center">65.5</td>
|
473 |
+
<td align="center">137849621</td>
|
474 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/metrics.json">metrics</a></td>
|
475 |
+
</tr>
|
476 |
+
<!-- ROW: keypoint_rcnn_R_101_FPN_3x -->
|
477 |
+
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
478 |
+
<td align="center">3x</td>
|
479 |
+
<td align="center">0.390</td>
|
480 |
+
<td align="center">0.076</td>
|
481 |
+
<td align="center">6.1</td>
|
482 |
+
<td align="center">56.4</td>
|
483 |
+
<td align="center">66.1</td>
|
484 |
+
<td align="center">138363331</td>
|
485 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/model_final_997cc7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/metrics.json">metrics</a></td>
|
486 |
+
</tr>
|
487 |
+
<!-- ROW: keypoint_rcnn_X_101_32x8d_FPN_3x -->
|
488 |
+
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
489 |
+
<td align="center">3x</td>
|
490 |
+
<td align="center">0.738</td>
|
491 |
+
<td align="center">0.121</td>
|
492 |
+
<td align="center">8.7</td>
|
493 |
+
<td align="center">57.3</td>
|
494 |
+
<td align="center">66.0</td>
|
495 |
+
<td align="center">139686956</td>
|
496 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/model_final_5ad38f.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/metrics.json">metrics</a></td>
|
497 |
+
</tr>
|
498 |
+
</tbody></table>
|
499 |
+
|
500 |
+
### COCO Panoptic Segmentation Baselines with Panoptic FPN
|
501 |
+
<!--
|
502 |
+
./gen_html_table.py --config 'COCO-PanopticSegmentation/*50*' 'COCO-PanopticSegmentation/*101*' --name R50-FPN R50-FPN R101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP PQ
|
503 |
+
-->
|
504 |
+
|
505 |
+
|
506 |
+
<table><tbody>
|
507 |
+
<!-- START TABLE -->
|
508 |
+
<!-- TABLE HEADER -->
|
509 |
+
<th valign="bottom">Name</th>
|
510 |
+
<th valign="bottom">lr<br/>sched</th>
|
511 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
512 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
513 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
514 |
+
<th valign="bottom">box<br/>AP</th>
|
515 |
+
<th valign="bottom">mask<br/>AP</th>
|
516 |
+
<th valign="bottom">PQ</th>
|
517 |
+
<th valign="bottom">model id</th>
|
518 |
+
<th valign="bottom">download</th>
|
519 |
+
<!-- TABLE BODY -->
|
520 |
+
<!-- ROW: panoptic_fpn_R_50_1x -->
|
521 |
+
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td>
|
522 |
+
<td align="center">1x</td>
|
523 |
+
<td align="center">0.304</td>
|
524 |
+
<td align="center">0.053</td>
|
525 |
+
<td align="center">4.8</td>
|
526 |
+
<td align="center">37.6</td>
|
527 |
+
<td align="center">34.7</td>
|
528 |
+
<td align="center">39.4</td>
|
529 |
+
<td align="center">139514544</td>
|
530 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td>
|
531 |
+
</tr>
|
532 |
+
<!-- ROW: panoptic_fpn_R_50_3x -->
|
533 |
+
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td>
|
534 |
+
<td align="center">3x</td>
|
535 |
+
<td align="center">0.302</td>
|
536 |
+
<td align="center">0.053</td>
|
537 |
+
<td align="center">4.8</td>
|
538 |
+
<td align="center">40.0</td>
|
539 |
+
<td align="center">36.5</td>
|
540 |
+
<td align="center">41.5</td>
|
541 |
+
<td align="center">139514569</td>
|
542 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td>
|
543 |
+
</tr>
|
544 |
+
<!-- ROW: panoptic_fpn_R_101_3x -->
|
545 |
+
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td>
|
546 |
+
<td align="center">3x</td>
|
547 |
+
<td align="center">0.392</td>
|
548 |
+
<td align="center">0.066</td>
|
549 |
+
<td align="center">6.0</td>
|
550 |
+
<td align="center">42.4</td>
|
551 |
+
<td align="center">38.5</td>
|
552 |
+
<td align="center">43.0</td>
|
553 |
+
<td align="center">139514519</td>
|
554 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td>
|
555 |
+
</tr>
|
556 |
+
</tbody></table>
|
557 |
+
|
558 |
+
|
559 |
+
### LVIS Instance Segmentation Baselines with Mask R-CNN
|
560 |
+
|
561 |
+
Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
|
562 |
+
These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
|
563 |
+
|
564 |
+
NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
|
565 |
+
They are roughly 24 epochs of LVISv0.5 data.
|
566 |
+
The final results of these configs have large variance across different runs.
|
567 |
+
|
568 |
+
<!--
|
569 |
+
./gen_html_table.py --config 'LVIS-InstanceSegmentation/mask*50*' 'LVIS-InstanceSegmentation/mask*101*' --name R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
570 |
+
-->
|
571 |
+
|
572 |
+
|
573 |
+
<table><tbody>
|
574 |
+
<!-- START TABLE -->
|
575 |
+
<!-- TABLE HEADER -->
|
576 |
+
<th valign="bottom">Name</th>
|
577 |
+
<th valign="bottom">lr<br/>sched</th>
|
578 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
579 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
580 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
581 |
+
<th valign="bottom">box<br/>AP</th>
|
582 |
+
<th valign="bottom">mask<br/>AP</th>
|
583 |
+
<th valign="bottom">model id</th>
|
584 |
+
<th valign="bottom">download</th>
|
585 |
+
<!-- TABLE BODY -->
|
586 |
+
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
587 |
+
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
588 |
+
<td align="center">1x</td>
|
589 |
+
<td align="center">0.292</td>
|
590 |
+
<td align="center">0.107</td>
|
591 |
+
<td align="center">7.1</td>
|
592 |
+
<td align="center">23.6</td>
|
593 |
+
<td align="center">24.4</td>
|
594 |
+
<td align="center">144219072</td>
|
595 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/model_final_571f7c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/metrics.json">metrics</a></td>
|
596 |
+
</tr>
|
597 |
+
<!-- ROW: mask_rcnn_R_101_FPN_1x -->
|
598 |
+
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml">R101-FPN</a></td>
|
599 |
+
<td align="center">1x</td>
|
600 |
+
<td align="center">0.371</td>
|
601 |
+
<td align="center">0.114</td>
|
602 |
+
<td align="center">7.8</td>
|
603 |
+
<td align="center">25.6</td>
|
604 |
+
<td align="center">25.9</td>
|
605 |
+
<td align="center">144219035</td>
|
606 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/model_final_824ab5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/metrics.json">metrics</a></td>
|
607 |
+
</tr>
|
608 |
+
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_1x -->
|
609 |
+
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml">X101-FPN</a></td>
|
610 |
+
<td align="center">1x</td>
|
611 |
+
<td align="center">0.712</td>
|
612 |
+
<td align="center">0.151</td>
|
613 |
+
<td align="center">10.2</td>
|
614 |
+
<td align="center">26.7</td>
|
615 |
+
<td align="center">27.1</td>
|
616 |
+
<td align="center">144219108</td>
|
617 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/model_final_5e3439.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/metrics.json">metrics</a></td>
|
618 |
+
</tr>
|
619 |
+
</tbody></table>
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
### Cityscapes & Pascal VOC Baselines
|
624 |
+
|
625 |
+
Simple baselines for
|
626 |
+
* Mask R-CNN on Cityscapes instance segmentation (initialized from COCO pre-training, then trained on Cityscapes fine annotations only)
|
627 |
+
* Faster R-CNN on PASCAL VOC object detection (trained on VOC 2007 train+val + VOC 2012 train+val, tested on VOC 2007 using 11-point interpolated AP)
|
628 |
+
|
629 |
+
<!--
|
630 |
+
./gen_html_table.py --config 'Cityscapes/*' 'PascalVOC-Detection/*' --name "R50-FPN, Cityscapes" "R50-C4, VOC" --fields train_speed inference_speed mem box_AP box_AP50 mask_AP
|
631 |
+
-->
|
632 |
+
|
633 |
+
|
634 |
+
<table><tbody>
|
635 |
+
<!-- START TABLE -->
|
636 |
+
<!-- TABLE HEADER -->
|
637 |
+
<th valign="bottom">Name</th>
|
638 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
639 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
640 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
641 |
+
<th valign="bottom">box<br/>AP</th>
|
642 |
+
<th valign="bottom">box<br/>AP50</th>
|
643 |
+
<th valign="bottom">mask<br/>AP</th>
|
644 |
+
<th valign="bottom">model id</th>
|
645 |
+
<th valign="bottom">download</th>
|
646 |
+
<!-- TABLE BODY -->
|
647 |
+
<!-- ROW: mask_rcnn_R_50_FPN -->
|
648 |
+
<tr><td align="left"><a href="configs/Cityscapes/mask_rcnn_R_50_FPN.yaml">R50-FPN, Cityscapes</a></td>
|
649 |
+
<td align="center">0.240</td>
|
650 |
+
<td align="center">0.078</td>
|
651 |
+
<td align="center">4.4</td>
|
652 |
+
<td align="center"></td>
|
653 |
+
<td align="center"></td>
|
654 |
+
<td align="center">36.5</td>
|
655 |
+
<td align="center">142423278</td>
|
656 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/model_final_af9cf5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/metrics.json">metrics</a></td>
|
657 |
+
</tr>
|
658 |
+
<!-- ROW: faster_rcnn_R_50_C4 -->
|
659 |
+
<tr><td align="left"><a href="configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml">R50-C4, VOC</a></td>
|
660 |
+
<td align="center">0.537</td>
|
661 |
+
<td align="center">0.081</td>
|
662 |
+
<td align="center">4.8</td>
|
663 |
+
<td align="center">51.9</td>
|
664 |
+
<td align="center">80.3</td>
|
665 |
+
<td align="center"></td>
|
666 |
+
<td align="center">142202221</td>
|
667 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/metrics.json">metrics</a></td>
|
668 |
+
</tr>
|
669 |
+
</tbody></table>
|
670 |
+
|
671 |
+
|
672 |
+
|
673 |
+
### Other Settings
|
674 |
+
|
675 |
+
Ablations for Deformable Conv and Cascade R-CNN:
|
676 |
+
|
677 |
+
<!--
|
678 |
+
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml' 'Misc/*R_50_FPN_1x_dconv*' 'Misc/cascade*1x.yaml' 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/*R_50_FPN_3x_dconv*' 'Misc/cascade*3x.yaml' --name "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
679 |
+
-->
|
680 |
+
|
681 |
+
|
682 |
+
<table><tbody>
|
683 |
+
<!-- START TABLE -->
|
684 |
+
<!-- TABLE HEADER -->
|
685 |
+
<th valign="bottom">Name</th>
|
686 |
+
<th valign="bottom">lr<br/>sched</th>
|
687 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
688 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
689 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
690 |
+
<th valign="bottom">box<br/>AP</th>
|
691 |
+
<th valign="bottom">mask<br/>AP</th>
|
692 |
+
<th valign="bottom">model id</th>
|
693 |
+
<th valign="bottom">download</th>
|
694 |
+
<!-- TABLE BODY -->
|
695 |
+
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
696 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">Baseline R50-FPN</a></td>
|
697 |
+
<td align="center">1x</td>
|
698 |
+
<td align="center">0.261</td>
|
699 |
+
<td align="center">0.043</td>
|
700 |
+
<td align="center">3.4</td>
|
701 |
+
<td align="center">38.6</td>
|
702 |
+
<td align="center">35.2</td>
|
703 |
+
<td align="center">137260431</td>
|
704 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
705 |
+
</tr>
|
706 |
+
<!-- ROW: mask_rcnn_R_50_FPN_1x_dconv_c3-c5 -->
|
707 |
+
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
708 |
+
<td align="center">1x</td>
|
709 |
+
<td align="center">0.342</td>
|
710 |
+
<td align="center">0.048</td>
|
711 |
+
<td align="center">3.5</td>
|
712 |
+
<td align="center">41.5</td>
|
713 |
+
<td align="center">37.5</td>
|
714 |
+
<td align="center">138602867</td>
|
715 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/model_final_65c703.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/metrics.json">metrics</a></td>
|
716 |
+
</tr>
|
717 |
+
<!-- ROW: cascade_mask_rcnn_R_50_FPN_1x -->
|
718 |
+
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml">Cascade R-CNN</a></td>
|
719 |
+
<td align="center">1x</td>
|
720 |
+
<td align="center">0.317</td>
|
721 |
+
<td align="center">0.052</td>
|
722 |
+
<td align="center">4.0</td>
|
723 |
+
<td align="center">42.1</td>
|
724 |
+
<td align="center">36.4</td>
|
725 |
+
<td align="center">138602847</td>
|
726 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/model_final_e9d89b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/metrics.json">metrics</a></td>
|
727 |
+
</tr>
|
728 |
+
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
729 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
730 |
+
<td align="center">3x</td>
|
731 |
+
<td align="center">0.261</td>
|
732 |
+
<td align="center">0.043</td>
|
733 |
+
<td align="center">3.4</td>
|
734 |
+
<td align="center">41.0</td>
|
735 |
+
<td align="center">37.2</td>
|
736 |
+
<td align="center">137849600</td>
|
737 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
738 |
+
</tr>
|
739 |
+
<!-- ROW: mask_rcnn_R_50_FPN_3x_dconv_c3-c5 -->
|
740 |
+
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
741 |
+
<td align="center">3x</td>
|
742 |
+
<td align="center">0.349</td>
|
743 |
+
<td align="center">0.047</td>
|
744 |
+
<td align="center">3.5</td>
|
745 |
+
<td align="center">42.7</td>
|
746 |
+
<td align="center">38.5</td>
|
747 |
+
<td align="center">144998336</td>
|
748 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/model_final_821d0b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/metrics.json">metrics</a></td>
|
749 |
+
</tr>
|
750 |
+
<!-- ROW: cascade_mask_rcnn_R_50_FPN_3x -->
|
751 |
+
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml">Cascade R-CNN</a></td>
|
752 |
+
<td align="center">3x</td>
|
753 |
+
<td align="center">0.328</td>
|
754 |
+
<td align="center">0.053</td>
|
755 |
+
<td align="center">4.0</td>
|
756 |
+
<td align="center">44.3</td>
|
757 |
+
<td align="center">38.5</td>
|
758 |
+
<td align="center">144998488</td>
|
759 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/metrics.json">metrics</a></td>
|
760 |
+
</tr>
|
761 |
+
</tbody></table>
|
762 |
+
|
763 |
+
|
764 |
+
Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
|
765 |
+
(Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
|
766 |
+
<!--
|
767 |
+
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/mask*50_FPN_3x_gn.yaml' 'Misc/mask*50_FPN_3x_syncbn.yaml' 'Misc/scratch*' --name "Baseline R50-FPN" "GN" "SyncBN" "GN (from scratch)" "GN (from scratch)" "SyncBN (from scratch)" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
768 |
+
-->
|
769 |
+
|
770 |
+
|
771 |
+
<table><tbody>
|
772 |
+
<!-- START TABLE -->
|
773 |
+
<!-- TABLE HEADER -->
|
774 |
+
<th valign="bottom">Name</th>
|
775 |
+
<th valign="bottom">lr<br/>sched</th>
|
776 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
777 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
778 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
779 |
+
<th valign="bottom">box<br/>AP</th>
|
780 |
+
<th valign="bottom">mask<br/>AP</th>
|
781 |
+
<th valign="bottom">model id</th>
|
782 |
+
<th valign="bottom">download</th>
|
783 |
+
<!-- TABLE BODY -->
|
784 |
+
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
785 |
+
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
786 |
+
<td align="center">3x</td>
|
787 |
+
<td align="center">0.261</td>
|
788 |
+
<td align="center">0.043</td>
|
789 |
+
<td align="center">3.4</td>
|
790 |
+
<td align="center">41.0</td>
|
791 |
+
<td align="center">37.2</td>
|
792 |
+
<td align="center">137849600</td>
|
793 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
794 |
+
</tr>
|
795 |
+
<!-- ROW: mask_rcnn_R_50_FPN_3x_gn -->
|
796 |
+
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml">GN</a></td>
|
797 |
+
<td align="center">3x</td>
|
798 |
+
<td align="center">0.356</td>
|
799 |
+
<td align="center">0.069</td>
|
800 |
+
<td align="center">7.3</td>
|
801 |
+
<td align="center">42.6</td>
|
802 |
+
<td align="center">38.6</td>
|
803 |
+
<td align="center">138602888</td>
|
804 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/model_final_dc5d9e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/metrics.json">metrics</a></td>
|
805 |
+
</tr>
|
806 |
+
<!-- ROW: mask_rcnn_R_50_FPN_3x_syncbn -->
|
807 |
+
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml">SyncBN</a></td>
|
808 |
+
<td align="center">3x</td>
|
809 |
+
<td align="center">0.371</td>
|
810 |
+
<td align="center">0.053</td>
|
811 |
+
<td align="center">5.5</td>
|
812 |
+
<td align="center">41.9</td>
|
813 |
+
<td align="center">37.8</td>
|
814 |
+
<td align="center">169527823</td>
|
815 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/model_final_3b3c51.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/metrics.json">metrics</a></td>
|
816 |
+
</tr>
|
817 |
+
<!-- ROW: scratch_mask_rcnn_R_50_FPN_3x_gn -->
|
818 |
+
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml">GN (from scratch)</a></td>
|
819 |
+
<td align="center">3x</td>
|
820 |
+
<td align="center">0.400</td>
|
821 |
+
<td align="center">0.069</td>
|
822 |
+
<td align="center">9.8</td>
|
823 |
+
<td align="center">39.9</td>
|
824 |
+
<td align="center">36.6</td>
|
825 |
+
<td align="center">138602908</td>
|
826 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/metrics.json">metrics</a></td>
|
827 |
+
</tr>
|
828 |
+
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_gn -->
|
829 |
+
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml">GN (from scratch)</a></td>
|
830 |
+
<td align="center">9x</td>
|
831 |
+
<td align="center">N/A</td>
|
832 |
+
<td align="center">0.070</td>
|
833 |
+
<td align="center">9.8</td>
|
834 |
+
<td align="center">43.7</td>
|
835 |
+
<td align="center">39.6</td>
|
836 |
+
<td align="center">183808979</td>
|
837 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/model_final_da7b4c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/metrics.json">metrics</a></td>
|
838 |
+
</tr>
|
839 |
+
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_syncbn -->
|
840 |
+
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml">SyncBN (from scratch)</a></td>
|
841 |
+
<td align="center">9x</td>
|
842 |
+
<td align="center">N/A</td>
|
843 |
+
<td align="center">0.055</td>
|
844 |
+
<td align="center">7.2</td>
|
845 |
+
<td align="center">43.6</td>
|
846 |
+
<td align="center">39.3</td>
|
847 |
+
<td align="center">184226666</td>
|
848 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/model_final_5ce33e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/metrics.json">metrics</a></td>
|
849 |
+
</tr>
|
850 |
+
</tbody></table>
|
851 |
+
|
852 |
+
|
853 |
+
A few very large models trained for a long time, for demo purposes. They are trained using multiple machines:
|
854 |
+
|
855 |
+
<!--
|
856 |
+
./gen_html_table.py --config 'Misc/panoptic_*dconv*' 'Misc/cascade_*152*' --name "Panoptic FPN R101" "Mask R-CNN X152" --fields inference_speed mem box_AP mask_AP PQ
|
857 |
+
# manually add TTA results
|
858 |
+
-->
|
859 |
+
|
860 |
+
|
861 |
+
<table><tbody>
|
862 |
+
<!-- START TABLE -->
|
863 |
+
<!-- TABLE HEADER -->
|
864 |
+
<th valign="bottom">Name</th>
|
865 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
866 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
867 |
+
<th valign="bottom">box<br/>AP</th>
|
868 |
+
<th valign="bottom">mask<br/>AP</th>
|
869 |
+
<th valign="bottom">PQ</th>
|
870 |
+
<th valign="bottom">model id</th>
|
871 |
+
<th valign="bottom">download</th>
|
872 |
+
<!-- TABLE BODY -->
|
873 |
+
<!-- ROW: panoptic_fpn_R_101_dconv_cascade_gn_3x -->
|
874 |
+
<tr><td align="left"><a href="configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml">Panoptic FPN R101</a></td>
|
875 |
+
<td align="center">0.107</td>
|
876 |
+
<td align="center">11.4</td>
|
877 |
+
<td align="center">47.4</td>
|
878 |
+
<td align="center">41.3</td>
|
879 |
+
<td align="center">46.1</td>
|
880 |
+
<td align="center">139797668</td>
|
881 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/model_final_be35db.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/metrics.json">metrics</a></td>
|
882 |
+
</tr>
|
883 |
+
<!-- ROW: cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
884 |
+
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml">Mask R-CNN X152</a></td>
|
885 |
+
<td align="center">0.242</td>
|
886 |
+
<td align="center">15.1</td>
|
887 |
+
<td align="center">50.2</td>
|
888 |
+
<td align="center">44.0</td>
|
889 |
+
<td align="center"></td>
|
890 |
+
<td align="center">18131413</td>
|
891 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/model_0039999_e76410.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/metrics.json">metrics</a></td>
|
892 |
+
</tr>
|
893 |
+
<!-- ROW: TTA cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
894 |
+
<tr><td align="left">above + test-time aug.</td>
|
895 |
+
<td align="center"></td>
|
896 |
+
<td align="center"></td>
|
897 |
+
<td align="center">51.9</td>
|
898 |
+
<td align="center">45.9</td>
|
899 |
+
<td align="center"></td>
|
900 |
+
<td align="center"></td>
|
901 |
+
<td align="center"></td>
|
902 |
+
</tr>
|
903 |
+
</tbody></table>
|
preprocess/humanparsing/mhp_extension/detectron2/README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<img src=".github/Detectron2-Logo-Horz.svg" width="300" >
|
2 |
+
|
3 |
+
Detectron2 is Facebook AI Research's next generation software system
|
4 |
+
that implements state-of-the-art object detection algorithms.
|
5 |
+
It is a ground-up rewrite of the previous version,
|
6 |
+
[Detectron](https://github.com/facebookresearch/Detectron/),
|
7 |
+
and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
|
8 |
+
|
9 |
+
<div align="center">
|
10 |
+
<img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
|
11 |
+
</div>
|
12 |
+
|
13 |
+
### What's New
|
14 |
+
* It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
|
15 |
+
* Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
|
16 |
+
* Can be used as a library to support [different projects](projects/) on top of it.
|
17 |
+
We'll open source more research projects in this way.
|
18 |
+
* It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
|
19 |
+
|
20 |
+
See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
|
21 |
+
to see more demos and learn about detectron2.
|
22 |
+
|
23 |
+
## Installation
|
24 |
+
|
25 |
+
See [INSTALL.md](INSTALL.md).
|
26 |
+
|
27 |
+
## Quick Start
|
28 |
+
|
29 |
+
See [GETTING_STARTED.md](GETTING_STARTED.md),
|
30 |
+
or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
|
31 |
+
|
32 |
+
Learn more at our [documentation](https://detectron2.readthedocs.org).
|
33 |
+
And see [projects/](projects/) for some projects that are built on top of detectron2.
|
34 |
+
|
35 |
+
## Model Zoo and Baselines
|
36 |
+
|
37 |
+
We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
|
38 |
+
|
39 |
+
|
40 |
+
## License
|
41 |
+
|
42 |
+
Detectron2 is released under the [Apache 2.0 license](LICENSE).
|
43 |
+
|
44 |
+
## Citing Detectron2
|
45 |
+
|
46 |
+
If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
|
47 |
+
|
48 |
+
```BibTeX
|
49 |
+
@misc{wu2019detectron2,
|
50 |
+
author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
|
51 |
+
Wan-Yen Lo and Ross Girshick},
|
52 |
+
title = {Detectron2},
|
53 |
+
howpublished = {\url{https://github.com/facebookresearch/detectron2}},
|
54 |
+
year = {2019}
|
55 |
+
}
|
56 |
+
```
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
RPN:
|
4 |
+
PRE_NMS_TOPK_TEST: 6000
|
5 |
+
POST_NMS_TOPK_TEST: 1000
|
6 |
+
ROI_HEADS:
|
7 |
+
NAME: "Res5ROIHeads"
|
8 |
+
DATASETS:
|
9 |
+
TRAIN: ("coco_2017_train",)
|
10 |
+
TEST: ("coco_2017_val",)
|
11 |
+
SOLVER:
|
12 |
+
IMS_PER_BATCH: 16
|
13 |
+
BASE_LR: 0.02
|
14 |
+
STEPS: (60000, 80000)
|
15 |
+
MAX_ITER: 90000
|
16 |
+
INPUT:
|
17 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
18 |
+
VERSION: 2
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
RESNETS:
|
4 |
+
OUT_FEATURES: ["res5"]
|
5 |
+
RES5_DILATION: 2
|
6 |
+
RPN:
|
7 |
+
IN_FEATURES: ["res5"]
|
8 |
+
PRE_NMS_TOPK_TEST: 6000
|
9 |
+
POST_NMS_TOPK_TEST: 1000
|
10 |
+
ROI_HEADS:
|
11 |
+
NAME: "StandardROIHeads"
|
12 |
+
IN_FEATURES: ["res5"]
|
13 |
+
ROI_BOX_HEAD:
|
14 |
+
NAME: "FastRCNNConvFCHead"
|
15 |
+
NUM_FC: 2
|
16 |
+
POOLER_RESOLUTION: 7
|
17 |
+
ROI_MASK_HEAD:
|
18 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
19 |
+
NUM_CONV: 4
|
20 |
+
POOLER_RESOLUTION: 14
|
21 |
+
DATASETS:
|
22 |
+
TRAIN: ("coco_2017_train",)
|
23 |
+
TEST: ("coco_2017_val",)
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 16
|
26 |
+
BASE_LR: 0.02
|
27 |
+
STEPS: (60000, 80000)
|
28 |
+
MAX_ITER: 90000
|
29 |
+
INPUT:
|
30 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
31 |
+
VERSION: 2
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
+
FPN:
|
8 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
+
ANCHOR_GENERATOR:
|
10 |
+
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
+
RPN:
|
13 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
+
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
+
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
+
# Detectron1 uses 2000 proposals per-batch,
|
17 |
+
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
+
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
+
POST_NMS_TOPK_TRAIN: 1000
|
20 |
+
POST_NMS_TOPK_TEST: 1000
|
21 |
+
ROI_HEADS:
|
22 |
+
NAME: "StandardROIHeads"
|
23 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
+
ROI_BOX_HEAD:
|
25 |
+
NAME: "FastRCNNConvFCHead"
|
26 |
+
NUM_FC: 2
|
27 |
+
POOLER_RESOLUTION: 7
|
28 |
+
ROI_MASK_HEAD:
|
29 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
+
NUM_CONV: 4
|
31 |
+
POOLER_RESOLUTION: 14
|
32 |
+
DATASETS:
|
33 |
+
TRAIN: ("coco_2017_train",)
|
34 |
+
TEST: ("coco_2017_val",)
|
35 |
+
SOLVER:
|
36 |
+
IMS_PER_BATCH: 16
|
37 |
+
BASE_LR: 0.02
|
38 |
+
STEPS: (60000, 80000)
|
39 |
+
MAX_ITER: 90000
|
40 |
+
INPUT:
|
41 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
42 |
+
VERSION: 2
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "RetinaNet"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_retinanet_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res3", "res4", "res5"]
|
7 |
+
ANCHOR_GENERATOR:
|
8 |
+
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
9 |
+
FPN:
|
10 |
+
IN_FEATURES: ["res3", "res4", "res5"]
|
11 |
+
RETINANET:
|
12 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
13 |
+
IOU_LABELS: [0, -1, 1]
|
14 |
+
DATASETS:
|
15 |
+
TRAIN: ("coco_2017_train",)
|
16 |
+
TEST: ("coco_2017_val",)
|
17 |
+
SOLVER:
|
18 |
+
IMS_PER_BATCH: 16
|
19 |
+
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
20 |
+
STEPS: (60000, 80000)
|
21 |
+
MAX_ITER: 90000
|
22 |
+
INPUT:
|
23 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
24 |
+
VERSION: 2
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
LOAD_PROPOSALS: True
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50
|
8 |
+
PROPOSAL_GENERATOR:
|
9 |
+
NAME: "PrecomputedProposals"
|
10 |
+
DATASETS:
|
11 |
+
TRAIN: ("coco_2017_train",)
|
12 |
+
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
13 |
+
TEST: ("coco_2017_val",)
|
14 |
+
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
15 |
+
DATALOADER:
|
16 |
+
# proposals are part of the dataset_dicts, and take a lot of RAM
|
17 |
+
NUM_WORKERS: 2
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|