Spaces:
Running
on
L40S
Running
on
L40S
franciszzj
commited on
Commit
Β·
16c2627
1
Parent(s):
bafa7b2
update gradio app
Browse files- app.py +65 -42
- utils/densepose_predictor.py +6 -4
- utils/garment_agnostic_mask_predictor.py +5 -5
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import numpy as np
|
2 |
from PIL import Image
|
|
|
3 |
from leffa.transform import LeffaTransform
|
4 |
from leffa.model import LeffaModel
|
5 |
from leffa.inference import LeffaInference
|
@@ -8,6 +9,9 @@ from utils.densepose_predictor import DensePosePredictor
|
|
8 |
|
9 |
import gradio as gr
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
13 |
assert control_type in [
|
@@ -20,14 +24,20 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
20 |
|
21 |
# Mask
|
22 |
if control_type == "virtual_tryon":
|
23 |
-
automasker = AutoMasker(
|
|
|
|
|
|
|
24 |
src_image = src_image.convert("RGB")
|
25 |
mask = automasker(src_image, "upper")["mask"]
|
26 |
elif control_type == "pose_transfer":
|
27 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
28 |
|
29 |
# DensePose
|
30 |
-
densepose_predictor = DensePosePredictor(
|
|
|
|
|
|
|
31 |
src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array)
|
32 |
src_image_seg_array = densepose_predictor.predict_seg(src_image_array)
|
33 |
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
@@ -72,43 +82,56 @@ if __name__ == "__main__":
|
|
72 |
# control_type = sys.argv[3]
|
73 |
# leffa_predict(src_image_path, ref_image_path, control_type)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
from PIL import Image
|
3 |
+
from huggingface_hub import snapshot_download
|
4 |
from leffa.transform import LeffaTransform
|
5 |
from leffa.model import LeffaModel
|
6 |
from leffa.inference import LeffaInference
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
|
12 |
+
# Download checkpoints
|
13 |
+
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./")
|
14 |
+
|
15 |
|
16 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
17 |
assert control_type in [
|
|
|
24 |
|
25 |
# Mask
|
26 |
if control_type == "virtual_tryon":
|
27 |
+
automasker = AutoMasker(
|
28 |
+
densepose_path="./ckpts/densepose",
|
29 |
+
schp_path="./ckpts/schp",
|
30 |
+
)
|
31 |
src_image = src_image.convert("RGB")
|
32 |
mask = automasker(src_image, "upper")["mask"]
|
33 |
elif control_type == "pose_transfer":
|
34 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
35 |
|
36 |
# DensePose
|
37 |
+
densepose_predictor = DensePosePredictor(
|
38 |
+
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
|
39 |
+
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
40 |
+
)
|
41 |
src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array)
|
42 |
src_image_seg_array = densepose_predictor.predict_seg(src_image_array)
|
43 |
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
|
|
82 |
# control_type = sys.argv[3]
|
83 |
# leffa_predict(src_image_path, ref_image_path, control_type)
|
84 |
|
85 |
+
with gr.Blocks().queue() as demo:
|
86 |
+
gr.Markdown(
|
87 |
+
"## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation")
|
88 |
+
gr.Markdown("Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer).")
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column():
|
91 |
+
src_image = gr.Image(
|
92 |
+
sources=["upload"],
|
93 |
+
type="filepath",
|
94 |
+
label="Source Person Image",
|
95 |
+
width=384,
|
96 |
+
height=512,
|
97 |
+
)
|
98 |
+
with gr.Row():
|
99 |
+
control_type = gr.Dropdown(
|
100 |
+
["virtual_tryon", "pose_transfer"], label="Control Type")
|
101 |
+
|
102 |
+
example = gr.Examples(
|
103 |
+
inputs=src_image,
|
104 |
+
examples_per_page=10,
|
105 |
+
examples=["./examples/14684_00_person.jpg",
|
106 |
+
"./examples/14092_00_person.jpg"],
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Column():
|
110 |
+
ref_image = gr.Image(
|
111 |
+
sources=["upload"],
|
112 |
+
type="filepath",
|
113 |
+
label="Reference Image",
|
114 |
+
width=384,
|
115 |
+
height=512,
|
116 |
+
)
|
117 |
+
with gr.Row():
|
118 |
+
gen_button = gr.Button("Generate")
|
119 |
+
|
120 |
+
example = gr.Examples(
|
121 |
+
inputs=ref_image,
|
122 |
+
examples_per_page=10,
|
123 |
+
examples=["./examples/04181_00_garment.jpg",
|
124 |
+
"./examples/14684_00_person.jpg"],
|
125 |
+
)
|
126 |
+
|
127 |
+
with gr.Column():
|
128 |
+
gen_image = gr.Image(
|
129 |
+
label="Generated Person Image",
|
130 |
+
width=384,
|
131 |
+
height=512,
|
132 |
+
)
|
133 |
+
|
134 |
+
gen_button.click(fn=leffa_predict, inputs=[
|
135 |
+
src_image, ref_image, control_type], outputs=[gen_image])
|
136 |
+
|
137 |
+
demo.launch(share=True, server_port=7860)
|
utils/densepose_predictor.py
CHANGED
@@ -10,13 +10,15 @@ from detectron2.engine import DefaultPredictor
|
|
10 |
|
11 |
|
12 |
class DensePosePredictor(object):
|
13 |
-
def __init__(self
|
|
|
|
|
|
|
14 |
cfg = get_cfg()
|
15 |
add_densepose_config(cfg)
|
16 |
cfg.merge_from_file(
|
17 |
-
|
18 |
-
|
19 |
-
cfg.MODEL.WEIGHTS = "ckpts/densepose/model_final_162be9.pkl" # Use the path to the pre-trained model weights
|
20 |
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # Adjust as needed
|
22 |
self.predictor = DefaultPredictor(cfg)
|
|
|
10 |
|
11 |
|
12 |
class DensePosePredictor(object):
|
13 |
+
def __init__(self,
|
14 |
+
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
|
15 |
+
weights_path="./ckpts/densepose/model_final_162be9.pkl"
|
16 |
+
):
|
17 |
cfg = get_cfg()
|
18 |
add_densepose_config(cfg)
|
19 |
cfg.merge_from_file(
|
20 |
+
config_path) # Use the path to the config file from densepose
|
21 |
+
cfg.MODEL.WEIGHTS = weights_path # Use the path to the pre-trained model weights
|
|
|
22 |
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # Adjust as needed
|
24 |
self.predictor = DefaultPredictor(cfg)
|
utils/garment_agnostic_mask_predictor.py
CHANGED
@@ -200,21 +200,21 @@ def hull_mask(mask_area: np.ndarray):
|
|
200 |
class AutoMasker:
|
201 |
def __init__(
|
202 |
self,
|
|
|
|
|
203 |
device="cuda",
|
204 |
):
|
205 |
-
densepose_ckpt = "./ckpts/densepose"
|
206 |
-
schp_ckpt = "./ckpts/schp"
|
207 |
np.random.seed(0)
|
208 |
torch.manual_seed(0)
|
209 |
torch.cuda.manual_seed(0)
|
210 |
|
211 |
-
self.densepose_processor = DensePose(
|
212 |
self.schp_processor_atr = SCHP(
|
213 |
-
ckpt_path=os.path.join(
|
214 |
device=device,
|
215 |
)
|
216 |
self.schp_processor_lip = SCHP(
|
217 |
-
ckpt_path=os.path.join(
|
218 |
device=device,
|
219 |
)
|
220 |
|
|
|
200 |
class AutoMasker:
|
201 |
def __init__(
|
202 |
self,
|
203 |
+
densepose_path: str = "./ckpts/densepose",
|
204 |
+
schp_path: str = "./ckpts/schp",
|
205 |
device="cuda",
|
206 |
):
|
|
|
|
|
207 |
np.random.seed(0)
|
208 |
torch.manual_seed(0)
|
209 |
torch.cuda.manual_seed(0)
|
210 |
|
211 |
+
self.densepose_processor = DensePose(densepose_path, device)
|
212 |
self.schp_processor_atr = SCHP(
|
213 |
+
ckpt_path=os.path.join(schp_path, "exp-schp-201908301523-atr.pth"),
|
214 |
device=device,
|
215 |
)
|
216 |
self.schp_processor_lip = SCHP(
|
217 |
+
ckpt_path=os.path.join(schp_path, "exp-schp-201908261155-lip.pth"),
|
218 |
device=device,
|
219 |
)
|
220 |
|