Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -92,15 +92,8 @@ def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
|
92 |
torch.backends.cuda.preferred_blas_library="cublaslt"
|
93 |
if step_index == int(pipeline.num_timesteps * 0.5):
|
94 |
# torch.set_float32_matmul_precision("medium")
|
95 |
-
callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
|
96 |
-
|
97 |
-
for child in module.children():
|
98 |
-
if len(list(child.children())) > 0:
|
99 |
-
change_dtype(child)
|
100 |
-
for param in child.parameters():
|
101 |
-
param.data = param.data.to(torch.float64)
|
102 |
-
|
103 |
-
change_dtype(pipeline.unet)
|
104 |
# pipe.guidance_scale=1.0
|
105 |
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
106 |
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
@@ -110,15 +103,8 @@ def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
|
110 |
torch.backends.cudnn.allow_tf32 = False
|
111 |
torch.backends.cuda.matmul.allow_tf32 = False
|
112 |
torch.set_float32_matmul_precision("highest")
|
113 |
-
callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
|
114 |
-
|
115 |
-
for child in module.children():
|
116 |
-
if len(list(child.children())) > 0:
|
117 |
-
change_dtype(child)
|
118 |
-
for param in child.parameters():
|
119 |
-
param.data = param.data.to(torch.bfloat16)
|
120 |
-
|
121 |
-
change_dtype(pipeline.unet)
|
122 |
# pipe.vae = vae_a
|
123 |
# pipe.unet = unet_a
|
124 |
# torch.backends.cudnn.deterministic = False
|
|
|
92 |
torch.backends.cuda.preferred_blas_library="cublaslt"
|
93 |
if step_index == int(pipeline.num_timesteps * 0.5):
|
94 |
# torch.set_float32_matmul_precision("medium")
|
95 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
|
96 |
+
#pipe.unet.to(torch.float64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# pipe.guidance_scale=1.0
|
98 |
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
99 |
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
|
|
103 |
torch.backends.cudnn.allow_tf32 = False
|
104 |
torch.backends.cuda.matmul.allow_tf32 = False
|
105 |
torch.set_float32_matmul_precision("highest")
|
106 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
|
107 |
+
#pipe.unet.to(torch.float64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# pipe.vae = vae_a
|
109 |
# pipe.unet = unet_a
|
110 |
# torch.backends.cudnn.deterministic = False
|