ford442 commited on
Commit
4f439d4
·
verified ·
1 Parent(s): cf909ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -12
app.py CHANGED
@@ -80,9 +80,9 @@ HF_TOKEN = os.getenv("HF_TOKEN")
80
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
81
 
82
  def load_and_prepare_model():
83
- vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
84
- vaeRV = AutoencoderKL.from_pretrained("stabilityai/RealVisXL_V5.0", safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
85
- sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
86
  pipe = StableDiffusionXLPipeline.from_pretrained(
87
  'ford442/RealVisXL_V5.0_BF16',
88
  #torch_dtype=torch.bfloat16,
@@ -134,9 +134,9 @@ def save_image(img):
134
  return unique_name
135
 
136
  def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
137
- filename= f'tst_A_{timestamp}.txt'
138
  with open(filename, "w") as f:
139
- f.write(f"Realvis 5.0 (Tester B) \n")
140
  f.write(f"Date/time: {timestamp} \n")
141
  f.write(f"Prompt: {prompt} \n")
142
  f.write(f"Steps: {num_inference_steps} \n")
@@ -145,10 +145,6 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
145
  f.write(f"Use Model Dtype: no \n")
146
  f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
147
  f.write(f"Model VAE: sdxl-vae-bf16 before cuda then attn_proc / scale factor 8 \n")
148
- f.write(f"Model UNET: sexy_beauty model \n")
149
- f.write(f"Model HiDiffusion OFF \n")
150
- f.write(f"Model do_resize ON \n")
151
- f.write(f"added torch to prereq and changed accellerate \n")
152
  upload_to_ftp(filename)
153
 
154
  @spaces.GPU(duration=30)
@@ -184,7 +180,7 @@ def generate_30(
184
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
185
  batch_options = options.copy()
186
  rv_image = pipe(**batch_options).images[0]
187
- sd_image_path = f"rv50_B_{timestamp}.png"
188
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
189
  upload_to_ftp(sd_image_path)
190
  unique_name = str(uuid.uuid4()) + ".png"
@@ -224,7 +220,7 @@ def generate_60(
224
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
225
  batch_options = options.copy()
226
  rv_image = pipe(**batch_options).images[0]
227
- sd_image_path = f"rv50_B_{timestamp}.png"
228
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
229
  upload_to_ftp(sd_image_path)
230
  unique_name = str(uuid.uuid4()) + ".png"
@@ -264,7 +260,7 @@ def generate_90(
264
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
265
  batch_options = options.copy()
266
  rv_image = pipe(**batch_options).images[0]
267
- sd_image_path = f"rv50_B_{timestamp}.png"
268
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
269
  upload_to_ftp(sd_image_path)
270
  unique_name = str(uuid.uuid4()) + ".png"
 
80
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
81
 
82
  def load_and_prepare_model():
83
+ #vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
84
+ vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
85
+ sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
86
  pipe = StableDiffusionXLPipeline.from_pretrained(
87
  'ford442/RealVisXL_V5.0_BF16',
88
  #torch_dtype=torch.bfloat16,
 
134
  return unique_name
135
 
136
  def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
137
+ filename= f'rv_C_{timestamp}.txt'
138
  with open(filename, "w") as f:
139
+ f.write(f"Realvis 5.0 (Tester C) \n")
140
  f.write(f"Date/time: {timestamp} \n")
141
  f.write(f"Prompt: {prompt} \n")
142
  f.write(f"Steps: {num_inference_steps} \n")
 
145
  f.write(f"Use Model Dtype: no \n")
146
  f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
147
  f.write(f"Model VAE: sdxl-vae-bf16 before cuda then attn_proc / scale factor 8 \n")
 
 
 
 
148
  upload_to_ftp(filename)
149
 
150
  @spaces.GPU(duration=30)
 
180
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
181
  batch_options = options.copy()
182
  rv_image = pipe(**batch_options).images[0]
183
+ sd_image_path = f"rv_C_{timestamp}.png"
184
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
185
  upload_to_ftp(sd_image_path)
186
  unique_name = str(uuid.uuid4()) + ".png"
 
220
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
221
  batch_options = options.copy()
222
  rv_image = pipe(**batch_options).images[0]
223
+ sd_image_path = f"rv_C_{timestamp}.png"
224
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
225
  upload_to_ftp(sd_image_path)
226
  unique_name = str(uuid.uuid4()) + ".png"
 
260
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
261
  batch_options = options.copy()
262
  rv_image = pipe(**batch_options).images[0]
263
+ sd_image_path = f"rv_C_{timestamp}.png"
264
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
265
  upload_to_ftp(sd_image_path)
266
  unique_name = str(uuid.uuid4()) + ".png"