File size: 7,513 Bytes
7f4e4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import pandas as pd
from smolagents import Tool
from typing import List, Dict, Any, Union, Tuple
from meteofrance_api import MeteoFranceClient
from src.skitour_api import get_topos, get_refuges, get_details_topo, get_massifs, get_recent_outings
from src.meteo_france_api import get_massif_conditions
from src.utils import geocode_location, assign_location_to_clusters, haversine, llm_summarizer



class RefugeTool(Tool):
    name = "refuge_recherche"
    description = "Recherche d'un refuge dans un massif donné"

    inputs = {
        "massif_id": {
            "description": "[Optional, default: None] Id du massif souhaité ",
            "type": "string",
        }
    }
    output_type = "string"

    def forward(self, massif_id) -> List[Dict]:
        return get_refuges(massif_id)
    
    
class GetRoutesTool(Tool):
    name = "list_routes"
    description = """
    Looking for a list of ski touring routes in a given list of mountain ranges.
    Returns a list containing the information of the topos found.
    Use `topo_details` immediately after this tool to get the details of a specific topo. 
    """

    inputs = {
        "mountain_range_ids": {
            "description": "List of mountain range ids",
            "type": "string",
        }
    }
    output_type = "any"

    def forward(self, mountain_range_ids: str) -> List[Dict]:

        topos = get_topos(mountain_range_ids)
        
        return topos
        
class DescribeRouteTool(Tool):
    name = "describe_route"
    description = """ 
    Searches for key information about a specific ski touring route, including weather forecasts and associated avalanche risks. 
    Always use this tool after using the `list_routes` tool.
    This tool returns a dictionary containing the route's information, the avalanche risk estimation bulletin, and the weather forecast for the coming days of the route.
    """
    inputs = {
        "id_route": {
            "description": "id of the route",
            "type": "string",
        },
        "id_range": {
            "description": "mountain range id of the route",
            "type": "string"}
    }
    output_type = "any"
    
    def __init__(self, skitour2meteofrance: dict, llm_engine: Any):
        super().__init__()
        self.massifs_infos = skitour2meteofrance
        self.weather_client =  MeteoFranceClient(access_token=os.getenv("METEO_FRANCE_API_KEY"))   
        self.llm_engine = llm_engine

    def forward(self, id_route: str, id_range: str) -> dict:

        topo_info = get_details_topo(str(id_route))
        avalanche_conditions = get_massif_conditions(
            self.massifs_infos[str(id_range)]['meteofrance_id']
            )
        lat, lon = topo_info["depart"]["latlon"]
        weather_forecast = self.weather_client.get_forecast(float(lat), float(lon))
        daily_forecast = weather_forecast.forecast[:24]

        for day_forecast in daily_forecast:
            day_forecast["dt"] = weather_forecast.timestamp_to_locale_time(day_forecast["dt"]).isoformat()
        forecast_summary = llm_summarizer(str(daily_forecast), self.llm_engine)
        avalanche_summary = llm_summarizer(str(avalanche_conditions), self.llm_engine)
        return {
            "route_info": topo_info, 
            "avalanche_conditions": avalanche_summary,
            "daily_weather_forecast": forecast_summary,
            "route_link": f"https://skitour.fr/topos/{id_route}"
            }   
    
class RecentOutingsTool(Tool):
    name = "recent_outings"
    description = """ 
    Searches for recent outings in a given mountain range.
    Returns a list of the most recent outings in the given range.
    """
    inputs = {
        "id_range": {
            "description": "id of the mountain range",
            "type": "string",
        }
    }
    output_type = "any"
    
    def forward(self, id_range: str) -> List[Dict]:
        return get_recent_outings(id_range)
    
class MountainRangesTool(Tool):
    name = "list_mountain_ranges"
    description = """ Searches for the ID(s) of the mountain ranges closest to a given location.
    If the location is too far from known ranges, the search returns None.
    Should return a string with the massif IDs separated by commas.
    """

    inputs = {
        "location": {
            "description": "Location to search for",
            "type": "string",
        },
        
        "num_ranges": {
            "description": "[Optional, default: 3] Number of closest mountain ranges to return",
            "type": "number",   
        }
    }
    output_type = "string"
    
    def __init__(self, clusters: Dict[str, List[Tuple[float, float]]]):
        super().__init__()
        self.clusters = clusters

    def forward(self, location: str, num_ranges: int) -> Union[str, None]:

        coord_location = geocode_location(location)
        if not location:
            return None
        
        matched_ranges = assign_location_to_clusters(coord_location, self.clusters, k=num_ranges)

        
        list_ranges = [range[0] for range in matched_ranges if range[1] < 100]
        if not list_ranges:
            return ''
      
        massifs= get_massifs()
       
        massif_ids = [_massif['id'] for _massif in massifs if _massif['nom'] in list_ranges]
        return ", ".join(massif_ids)
    
class ForecastTool(Tool):
    name = "forecast"
    description = """Searches for the weather forecast for a given location as well as the current avalanche risk estimation bulletin.  
    Unnecessary if the user is inquiring about a route, as `describe_route` already provides this information."""
    
    inputs = {
        "location": {
            "description": "Location to search for",
            "type": "string",
        },
    }
    
    output_type = "any"

    def __init__(self, llm_engine, clusters: Dict[str, List[Tuple[float, float]]], skitour2meteofrance: dict):
        super().__init__()
        self.clusters = clusters
        self.massifs_infos = skitour2meteofrance
        self.llm_engine = llm_engine
        
    def forward(self, location: str) -> Union[Dict[str, Any], None]:

        coord_location = geocode_location(location)
        if not location:
            return None
        
        # Get the closest mountain range to the location to get the avalanche conditions
        matched_ranges = assign_location_to_clusters(coord_location, self.clusters, k=1)
        
        list_ranges = [range[0] for range in matched_ranges if range[1] < 100]
        if not list_ranges:
            return None
      
        massifs= get_massifs()
       
        massif_id = [_massif['id'] for _massif in massifs if _massif['nom'] in list_ranges]
        
        avalanche_conditions = get_massif_conditions(
            self.massifs_infos[str(massif_id[0])]['meteofrance_id']
            )
        
        weather_client =  MeteoFranceClient(access_token=os.getenv("METEO_FRANCE_API_KEY"))
        forecast = weather_client.get_forecast(*coord_location)
        daily_forecast = forecast.forecast[:24]
        
        for day_forecast in daily_forecast:
            day_forecast["dt"] = forecast.timestamp_to_locale_time(day_forecast["dt"]).isoformat()
        
        forecast_summary = llm_summarizer(str(daily_forecast), self.llm_engine)
        avalanche_summary = llm_summarizer(str(avalanche_conditions), self.llm_engine)
            
    
        return {"forecast": forecast_summary, "avalanche_conditions": avalanche_summary}