Spaces:
Runtime error
Runtime error
import sys | |
import gradio as gr | |
import jax | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
from transformers import AutoTokenizer | |
import torch | |
from torchvision.io import ImageReadMode, read_image | |
LOCAL_PATH = snapshot_download("flax-community/medclip") | |
sys.path.append(LOCAL_PATH) | |
from src.modeling_medclip import FlaxMedCLIP | |
from run_medclip import Transform | |
def prepare_image(image_path, model): | |
image = read_image(image_path, mode=ImageReadMode.RGB) | |
preprocess = Transform(model.config.vision_config.image_size) | |
preprocess = torch.jit.script(preprocess) | |
preprocessed_image = preprocess(image) | |
pixel_values = torch.stack([preprocessed_image]).permute(0, 2, 3, 1).numpy() | |
return pixel_values | |
def prepare_text(text, tokenizer): | |
return tokenizer(text, return_tensors="np") | |
def save_file_to_disk(uplaoded_file): | |
temp_file = "/tmp/image.jpeg" | |
im = Image.fromarray(uplaoded_file) | |
im.save(temp_file) | |
return temp_file | |
def load_tokenizer_and_model(): | |
# load the saved model | |
tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased") | |
model = FlaxMedCLIP.from_pretrained(LOCAL_PATH) | |
return tokenizer, model | |
def run_inference(image_path, text, model, tokenizer): | |
pixel_values = prepare_image(image_path, model) | |
input_text = prepare_text(text, tokenizer) | |
model_output = model( | |
input_text["input_ids"], | |
pixel_values, | |
attention_mask=input_text["attention_mask"], | |
train=False, | |
return_dict=True, | |
) | |
logits = model_output["logits_per_image"] | |
score = jax.nn.sigmoid(logits)[0][0] | |
return score | |
tokenizer, model = load_tokenizer_and_model() | |
def score_image_caption_pair(uploaded_file, text_input): | |
local_image_path = save_file_to_disk(uploaded_file) | |
score = run_inference( | |
local_image_path, text_input, model, tokenizer).tolist() | |
return {"Score": score} | |
image = gr.inputs.Image(shape=(299, 299)) | |
iface = gr.Interface( | |
fn=score_image_caption_pair, inputs=[image, "text"], outputs=["label"], allow_flagging=False, | |
title="Medical diagnosis evaluation via MedCLIP", | |
description=""" | |
The purpose of this demo is to help medical students measure their diagnostic capabilities in purely academic settings. | |
Under no circumstances should it be used to make a self-diagnosis or confront a real doctor. | |
""" | |
) | |
iface.launch() |