Spaces:
Build error
Build error
import nmslib | |
import streamlit as st | |
from transformers import CLIPProcessor, AutoTokenizer, ViTFeatureExtractor | |
import numpy as np | |
from koclip import FlaxHybridCLIP | |
def load_index(img_file): | |
filenames, embeddings = [], [] | |
lines = open(img_file, "r") | |
for line in lines: | |
cols = line.strip().split('\t') | |
filename = cols[0] | |
embedding = np.array([float(x) for x in cols[1].split(',')]) | |
filenames.append(filename) | |
embeddings.append(embedding) | |
embeddings = np.array(embeddings) | |
index = nmslib.init(method='hnsw', space='cosinesimil') | |
index.addDataPointBatch(embeddings) | |
index.createIndex({'post': 2}, print_progress=True) | |
return filenames, index | |
def load_model(model_name="koclip/koclip"): | |
assert model_name in {"koclip/koclip", "koclip/koclip-large"} | |
model = FlaxHybridCLIP.from_pretrained(model_name) | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
processor.tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large") | |
if model_name == "koclip/koclip-large": | |
processor.feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-large-patch16-224") | |
return model, processor | |
def load_model_v2(model_name="koclip/koclip"): | |
model = FlaxHybridCLIP.from_pretrained(model_name) | |
processor = CLIPProcessor.from_pretrained(model_name) | |
return model, processor | |