Flavio de Oliveira commited on
Commit
e411600
·
1 Parent(s): db11cde

First commit

Browse files
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ __pycache__
2
+ .DS_Store
3
+ flagged/
4
+ tests/
5
+ *.yml
6
+ *.ipynb
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Trocr Bullinger Htr
3
- emoji: 🔥
4
  colorFrom: indigo
5
  colorTo: gray
6
  sdk: gradio
 
1
  ---
2
+ title: TrOCR Bullinger HTR
3
+ emoji: ✍️
4
  colorFrom: indigo
5
  colorTo: gray
6
  sdk: gradio
app.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from PIL import Image
4
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoImageProcessor
5
+ # import utils
6
+ import base64
7
+ # from datasets import load_metric
8
+ import evaluate
9
+ import logging
10
+
11
+ # Only show log messages that are at the ERROR level or above, effectively filtering out any warnings
12
+ logging.getLogger('transformers').setLevel(logging.ERROR)
13
+
14
+ processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
15
+ image_processor = AutoImageProcessor.from_pretrained("pstroe/bullinger-general-model")
16
+ model = VisionEncoderDecoderModel.from_pretrained("pstroe/bullinger-general-model")
17
+
18
+ # Create examples
19
+ # Get images and respective transcriptions from the examples directory
20
+ def get_example_data(folder_path="./examples/"):
21
+
22
+ example_data = []
23
+
24
+ # Get list of all files in the folder
25
+ all_files = os.listdir(folder_path)
26
+
27
+ # Loop through the file list
28
+ for file_name in all_files:
29
+
30
+ file_path = os.path.join(folder_path, file_name)
31
+
32
+ # Check if the file is an image (.png)
33
+ if file_name.endswith(".png"):
34
+
35
+ # Construct the corresponding .txt filename (same name)
36
+ corresponding_text_file_name = file_name.replace(".png", ".txt")
37
+ corresponding_text_file_path = os.path.join(folder_path, corresponding_text_file_name)
38
+
39
+ # Initialize to a default value
40
+ transcription = "Transcription not found."
41
+
42
+ # Try to read the content from the .txt file
43
+ try:
44
+ with open(corresponding_text_file_path, "r") as f:
45
+ transcription = f.read().strip()
46
+ except FileNotFoundError:
47
+ pass # If the corresponding .txt file is not found, leave the default value
48
+
49
+ example_data.append([file_path, transcription])
50
+
51
+ return example_data
52
+
53
+ # From pstroe's script
54
+ # def compute_metrics(pred):
55
+
56
+ # labels_ids = pred.label_ids
57
+ # pred_ids = pred.predictions
58
+
59
+ # pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
60
+ # labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
61
+ # label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
62
+
63
+ # cer = cer_metric.compute(predictions=pred_str, references=label_str)
64
+
65
+ # return {"cer": cer}
66
+
67
+ def process_image(image, ground_truth):
68
+
69
+ cer = None
70
+
71
+ # prepare image
72
+ pixel_values = image_processor(image, return_tensors="pt").pixel_values
73
+
74
+ # generate (no beam search)
75
+ generated_ids = model.generate(pixel_values)
76
+
77
+ # decode
78
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
79
+
80
+ if ground_truth is not None and ground_truth.strip() != "":
81
+
82
+ # Debug: Print lengths before computing metric
83
+ print("Number of predictions:", len(generated_text))
84
+ print("Number of references:", len(ground_truth))
85
+
86
+ # Check if lengths match
87
+ if len(generated_text) != len(ground_truth):
88
+
89
+ print("Mismatch in number of predictions and references.")
90
+ print("Predictions:", generated_text)
91
+ print("References:", ground_truth)
92
+ print("\n")
93
+
94
+ cer = cer_metric.compute(predictions=[generated_text], references=[ground_truth])
95
+ # cer = f"{cer:.3f}"
96
+
97
+ else:
98
+
99
+ cer = "Ground truth not provided"
100
+
101
+ return generated_text, cer
102
+
103
+ # One way to use .svg files
104
+ # logo_url = "https://www.bullinger-digital.ch/bullinger-digital.svg"
105
+ # logo_url = "https://www.cl.uzh.ch/docroot/logos/uzh_logo_e_pos.svg"
106
+
107
+ # header_html = "<img src='data:image/png;base64,{}' class='img-fluid' width='180px'>".format(
108
+ # utils.img_to_bytes(".uzh_logo_e_pos.svg")
109
+ # )
110
+
111
+ # Encode images
112
+ with open("assets/uzh_logo.png", "rb") as img_file:
113
+ logo_html = base64.b64encode(img_file.read()).decode('utf-8')
114
+
115
+ with open("assets/bullinger-digital.png", "rb") as img_file:
116
+ footer_html = base64.b64encode(img_file.read()).decode('utf-8')
117
+
118
+ # App header
119
+ title = """
120
+ <h1 style='text-align: center'> TrOCR: Bullinger Dataset</p>
121
+ """
122
+
123
+ description = """
124
+ Use of Microsoft's [TrOCR](https://arxiv.org/abs/2109.10282), an encoder-decoder model consisting of an \
125
+ image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition \
126
+ (OCR) on single-text line images. \
127
+ This particular model was fine-tuned on [Bullinger Dataset](https://github.com/pstroe/bullinger-htr) \
128
+ as part of the project [Bullinger Digital](https://www.bullinger-digital.ch)
129
+ ([References](https://www.cl.uzh.ch/de/people/team/compling/pstroebel.html#Publications)).
130
+ * HF `model card`: [pstroe/bullinger-general-model](https://huggingface.co/pstroe/bullinger-general-model) | \
131
+ [Flexible Techniques for Automatic Text Recognition of Historical Documents](https://doi.org/10.5167/uzh-234886)
132
+ """
133
+
134
+ # articles = """
135
+ # <p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a><br>
136
+ # <a href='https://doi.org/10.5167/uzh-234886'>Flexible Techniques for Automatic Text Recognition of Historical Documents</a><br>
137
+ # <a href='https://zenodo.org/record/7715357'>Bullingers Briefwechsel zugänglich machen: Stand der Handschriftenerkennung</a></p>
138
+ # """
139
+
140
+ # Read .png and the respective .txt files
141
+ examples = get_example_data()
142
+
143
+ # load_metric() is deprecated
144
+ # cer_metric = load_metric("cer")
145
+ # pip install evaluate
146
+ cer_metric = evaluate.load("cer")
147
+
148
+ with gr.Blocks(
149
+ theme=gr.themes.Soft(),
150
+ title="TrOCR Bullinger",
151
+ ) as demo:
152
+
153
+ gr.HTML(
154
+ f"""
155
+ <div style='display: flex; justify-content: left; width: 100%;'>
156
+ <img src='data:image/png;base64,{logo_html}' class='img-fluid' width='200px'>
157
+ </div>
158
+ """
159
+ )
160
+
161
+ #174x60
162
+
163
+ title = gr.HTML(title)
164
+ description = gr.Markdown(description)
165
+
166
+ with gr.Row():
167
+
168
+ with gr.Column(variant="panel"):
169
+
170
+ input = gr.components.Image(type="pil", label="Input image:")
171
+
172
+ with gr.Row():
173
+
174
+ btn_clear = gr.Button(value="Clear")
175
+ button = gr.Button(value="Submit")
176
+
177
+ with gr.Column(variant="panel"):
178
+
179
+ output = gr.components.Textbox(label="Generated text:")
180
+ ground_truth = gr.components.Textbox(value="", placeholder="Provide the ground truth, if available.", label="Ground truth:")
181
+ cer_output = gr.components.Textbox(label="CER:")
182
+
183
+ with gr.Row():
184
+
185
+ with gr.Accordion(label="Choose an example from test set:", open=False):
186
+
187
+ gr.Examples(
188
+ examples=examples,
189
+ inputs = [input, ground_truth],
190
+ label=None,
191
+ )
192
+
193
+ with gr.Row():
194
+
195
+ gr.HTML(
196
+ f"""
197
+ <div style="display: flex; align-items: center; justify-content: center">
198
+ <img src="data:image/png;base64,{footer_html}" style="width: 150px; height: 60px; object-fit: contain; margin-right: 5px; margin-bottom: 5px">
199
+ <p style="font-size: 13px">
200
+ | Institut für Computerlinguistik, Universität Zürich, 2023
201
+ </p>
202
+ </div>
203
+ """
204
+ )
205
+
206
+ #383x85
207
+
208
+ button.click(process_image, inputs=[input, ground_truth], outputs=[output, cer_output])
209
+ btn_clear.click(lambda: [None, "", "", ""], outputs=[input, output, ground_truth, cer_output])
210
+
211
+ # Try to force light mode
212
+ js = """
213
+ function () {
214
+ gradioURL = window.location.href
215
+ if (!gradioURL.endsWith('?__theme=light')) {
216
+ window.location.replace(gradioURL + '?__theme=light');
217
+ }
218
+ }"""
219
+
220
+ demo.load(_js=js)
221
+
222
+ if __name__ == "__main__":
223
+
224
+ demo.launch(favicon_path="icon.png")
assets/bullinger-digital.png ADDED
assets/uzh_logo.png ADDED
examples/6_00_r1l2.png ADDED
examples/6_00_r1l2.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Gratiam et pacem a domino. Accepi tuas nuper literas, breves quidem, sed tamen mihi
examples/6_00_r1l4.png ADDED
examples/6_00_r1l4.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ et recte quidem, ne temere, ad quos legittime sim vocatus, deseram: non equidem
examples/6_00_r1l44.png ADDED
examples/6_00_r1l44.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ zuͦ einem zeichen der dankbarkeit; so ich köndte und vermöchte, wolt
examples/7_00_r1l5.png ADDED
examples/7_00_r1l5.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ gethon, wytters nichts zugeschriben, an solchem haben
icon.png ADDED
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ gradio==3.42.0
2
+ torch==2.0.1
3
+ pillow==9.4.0
4
+ transformers==4.33.0
5
+ datasets==2.14.4
6
+ jiwer==3.0.3
7
+ evaluate==0.4.0