Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,96 +1,60 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import numpy as np
|
4 |
import supervision as sv
|
5 |
-
import
|
6 |
-
|
7 |
from transformers import pipeline
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
EXAMPLES = [
|
14 |
-
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "dog", 0.5],
|
15 |
-
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "building", 0.5],
|
16 |
-
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "jacket", 0.5],
|
17 |
-
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "coffee", 0.6],
|
18 |
-
]
|
19 |
-
|
20 |
-
MIN_AREA_THRESHOLD = 0.01
|
21 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
model="facebook/sam-vit-large",
|
28 |
-
device=DEVICE
|
29 |
-
)
|
30 |
-
except Exception as e:
|
31 |
-
print(f"Error initializing SAM generator: {e}")
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
)
|
38 |
|
39 |
-
|
40 |
-
color=sv.Color.white(),
|
41 |
-
color_lookup=sv.ColorLookup.INDEX,
|
42 |
-
opacity=1
|
43 |
-
)
|
44 |
|
45 |
-
#
|
46 |
-
def
|
47 |
-
|
48 |
-
|
49 |
-
mask = np.array(outputs['masks'], dtype=np.uint8)
|
50 |
-
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
51 |
-
except Exception as e:
|
52 |
-
print(f"Error running SAM model: {e}")
|
53 |
-
return sv.Detections(xyxy=[], mask=[])
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
area = width * height
|
62 |
|
63 |
-
|
64 |
-
detections = detections[detections.area / area > MIN_AREA_THRESHOLD]
|
65 |
|
66 |
-
|
67 |
-
return [
|
68 |
-
SEMITRANSPARENT_MASK_ANNOTATOR.annotate(image_rgb_pil, detections),
|
69 |
-
SOLID_MASK_ANNOTATOR.annotate(blank_image, detections)
|
70 |
-
]
|
71 |
-
#************
|
72 |
-
#GRADIO CONSTRUCTION
|
73 |
with gr.Blocks() as demo:
|
74 |
-
gr.Markdown(
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
77 |
-
input_image = gr.Image(
|
78 |
-
submit_button = gr.Button("
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
examples=EXAMPLES,
|
84 |
-
fn=inference,
|
85 |
-
inputs=[input_image],
|
86 |
-
outputs=[gallery],
|
87 |
-
cache_examples=False,
|
88 |
-
run_on_click=True
|
89 |
-
)
|
90 |
submit_button.click(
|
91 |
-
|
92 |
-
inputs=
|
93 |
-
outputs=
|
94 |
)
|
95 |
|
96 |
-
demo.launch(debug=
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
|
|
3 |
import supervision as sv
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
from transformers import pipeline
|
7 |
+
from PIL import Image
|
8 |
|
9 |
+
# Definici贸n de la clase SamAutomaticMaskGenerator
|
10 |
+
class SamAutomaticMaskGenerator:
|
11 |
+
def __init__(self, sam_pipeline):
|
12 |
+
self.sam_pipeline = sam_pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def generate(self, image_rgb):
|
15 |
+
outputs = self.sam_pipeline(image_rgb, points_per_batch=32)
|
16 |
+
mask = np.array(outputs['masks'], dtype=np.uint8)
|
17 |
+
return mask
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Configuraci贸n del modelo SAM
|
20 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
sam_pipeline = pipeline(
|
22 |
+
task="mask-generation",
|
23 |
+
model="facebook/sam-vit-large",
|
24 |
+
device=DEVICE
|
25 |
)
|
26 |
|
27 |
+
mask_generator = SamAutomaticMaskGenerator(sam_pipeline)
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Funci贸n para procesar y anotar la imagen
|
30 |
+
def process_image(image_pil):
|
31 |
+
image_rgb = np.array(image_pil)
|
32 |
+
image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
sam_result = mask_generator.generate(image_rgb)
|
35 |
+
mask_annotator = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
36 |
+
detections = sv.Detections.from_sam(sam_result=sam_result)
|
37 |
|
38 |
+
annotated_image = mask_annotator.annotate(scene=image_bgr.copy(), detections=detections)
|
39 |
+
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
|
|
40 |
|
41 |
+
return Image.fromarray(image_rgb), Image.fromarray(annotated_image_rgb)
|
|
|
42 |
|
43 |
+
# Construcci贸n de la interfaz Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("# SAM - Segmentaci贸n de Im谩genes")
|
46 |
with gr.Row():
|
47 |
with gr.Column():
|
48 |
+
input_image = gr.Image(type="pil", label="Cargar Imagen")
|
49 |
+
submit_button = gr.Button("Segmentar")
|
50 |
+
with gr.Column():
|
51 |
+
original_image = gr.Image(type="pil", label="Imagen Original")
|
52 |
+
segmented_image = gr.Image(type="pil", label="Imagen Segmentada")
|
53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
submit_button.click(
|
55 |
+
process_image,
|
56 |
+
inputs=input_image,
|
57 |
+
outputs=[original_image, segmented_image]
|
58 |
)
|
59 |
|
60 |
+
demo.launch(debug=True)
|