Sa2VA-simple-demo / projects /llava_sam2 /datasets /RefYoutubeVOS_Dataset.py
fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame
1.78 kB
from .ReVOS_Dataset import VideoReVOSDataset
import json
import pickle
class VideoRefYoutubeVOSDataset(VideoReVOSDataset):
def json_file_preprocess(self, expression_file, mask_file):
# prepare expression annotation files
with open(expression_file, 'r') as f:
expression_datas = json.load(f)['videos']
metas = []
anno_count = 0 # serve as anno_id
vid2metaid = {}
for vid_name in expression_datas:
vid_express_data = expression_datas[vid_name]
vid_frames = sorted(vid_express_data['frames'])
vid_len = len(vid_frames)
exp_id_list = sorted(list(vid_express_data['expressions'].keys()))
for exp_id in exp_id_list:
exp_dict = vid_express_data['expressions'][exp_id]
meta = {}
meta['video'] = vid_name
meta['exp'] = exp_dict['exp'] # str
meta['mask_anno_id'] = [str(anno_count), ]
if 'obj_id' in exp_dict.keys():
meta['obj_id'] = exp_dict['obj_id']
else:
meta['obj_id'] = [0, ] # Ref-Youtube-VOS only has one object per expression
meta['anno_id'] = [str(anno_count), ]
anno_count += 1
meta['frames'] = vid_frames
meta['exp_id'] = exp_id
meta['length'] = vid_len
metas.append(meta)
if vid_name not in vid2metaid.keys():
vid2metaid[vid_name] = []
vid2metaid[vid_name].append(len(metas) - 1)
# process mask annotation files
with open(mask_file, 'rb') as f:
mask_dict = pickle.load(f)
return vid2metaid, metas, mask_dict