fffiloni's picture
install flash attn on runtime
b29876f verified
raw
history blame
8.11 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import numpy as np
import os
import tempfile
import spaces
import gradio as gr
import subprocess
import sys
def install_flash_attn_wheel():
flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"
try:
# Call pip to install the wheel file
subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url])
print("Wheel installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install the flash attnetion wheel. Error: {e}")
install_flash_attn_wheel()
import cv2
try:
from mmengine.visualization import Visualizer
except ImportError:
Visualizer = None
print("Warning: mmengine is not installed, visualization is disabled.")
# Load the model and tokenizer
model_path = "ByteDance/Sa2VA-4B"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
device_map="cuda:0",
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code = True,
)
from third_parts import VideoReader
def read_video(video_path, video_interval):
vid_frames = VideoReader(video_path)[::video_interval]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
image_paths = [] # List to store paths of saved images
for frame_idx in range(len(vid_frames)):
frame_image = vid_frames[frame_idx]
frame_image = frame_image[..., ::-1] # BGR (opencv system) to RGB (numpy system)
frame_image = Image.fromarray(frame_image)
vid_frames[frame_idx] = frame_image
# Save the frame as a .jpg file in the temporary folder
image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
frame_image.save(image_path, format="JPEG")
# Append the image path to the list
image_paths.append(image_path)
return vid_frames, image_paths
def visualize(pred_mask, image_path, work_dir):
visualizer = Visualizer()
img = cv2.imread(image_path)
visualizer.set_image(img)
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
visual_result = visualizer.get_image()
output_path = os.path.join(work_dir, os.path.basename(image_path))
cv2.imwrite(output_path, visual_result)
return output_path
@spaces.GPU
def image_vision(image_input_path, prompt):
image_path = image_input_path
text_prompts = f"<image>{prompt}"
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
print(return_dict)
answer = return_dict["prediction"] # the text format answer
seg_image = return_dict["prediction_masks"]
if '[SEG]' in answer and Visualizer is not None:
pred_masks = seg_image[0]
temp_dir = tempfile.mkdtemp()
pred_mask = pred_masks
os.makedirs(temp_dir, exist_ok=True)
seg_result = visualize(pred_mask, image_input_path, temp_dir)
return answer, seg_result
else:
return answer, None
@spaces.GPU(duration=80)
def video_vision(video_input_path, prompt, video_interval):
# Open the original video
cap = cv2.VideoCapture(video_input_path)
# Get original video properties
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip_factor = video_interval
# Calculate new FPS
new_fps = original_fps / frame_skip_factor
vid_frames, image_paths = read_video(video_input_path, video_interval)
# create a question (<image> is a placeholder for the video frames)
question = f"<image>{prompt}"
result = model.predict_forward(
video=vid_frames,
text=question,
tokenizer=tokenizer,
)
prediction = result['prediction']
print(prediction)
if '[SEG]' in prediction and Visualizer is not None:
_seg_idx = 0
pred_masks = result['prediction_masks'][_seg_idx]
seg_frames = []
for frame_idx in range(len(vid_frames)):
pred_mask = pred_masks[frame_idx]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
seg_frames.append(seg_frame)
output_video = "output_video.mp4"
# Read the first image to get the size (resolution)
frame = cv2.imread(seg_frames[0])
height, width, layers = frame.shape
# Define the video codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
# Iterate over the image paths and write to the video
for img_path in seg_frames:
frame = cv2.imread(img_path)
video.write(frame)
# Release the video writer
video.release()
print(f"Video created successfully at {output_video}")
return result['prediction'], output_video
else:
return result['prediction'], None
# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/magic-research/Sa2VA">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://arxiv.org/abs/2501.04001">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/Sa2VA-simple-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Tab("Single Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Image IN", type="filepath")
with gr.Row():
instruction = gr.Textbox(label="Instruction", scale=4)
submit_image_btn = gr.Button("Submit", scale=1)
with gr.Column():
output_res = gr.Textbox(label="Response")
output_image = gr.Image(label="Segmentation", type="numpy")
submit_image_btn.click(
fn = image_vision,
inputs = [image_input, instruction],
outputs = [output_res, output_image]
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video IN")
frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6)
with gr.Row():
vid_instruction = gr.Textbox(label="Instruction", scale=4)
submit_video_btn = gr.Button("Submit", scale=1)
with gr.Column():
vid_output_res = gr.Textbox(label="Response")
output_video = gr.Video(label="Segmentation")
submit_video_btn.click(
fn = video_vision,
inputs = [video_input, vid_instruction, frame_interval],
outputs = [vid_output_res, output_video]
)
demo.queue().launch(show_api=False, show_error=True)