File size: 10,040 Bytes
d59f323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

import torch
import torch.nn as nn

from mmengine.model import BaseModel

from xtuner.registry import BUILDER
from xtuner.model.utils import get_peft_model_state_dict


class LisaModel(BaseModel):
    def __init__(self,
                 mllm,
                 tokenizer,
                 grounding_encoder,
                 loss_mask=None,
                 loss_dice=None,):
        super(LisaModel, self).__init__()
        self.mllm = BUILDER.build(mllm)

        if self.mllm.use_llm_lora:
            self.mllm.model.language_model.base_model.model.lm_head.requires_grad_(True)
            self.mllm.model.language_model.base_model.model.model.embed_tokens.requires_grad_(True)

        self.tokenizer = BUILDER.build(tokenizer)
        self._add_special_tokens()
        self.grounding_encoder = BUILDER.build(grounding_encoder)
        self.grounding_encoder.requires_grad_(False)
        self.grounding_encoder.mask_decoder.requires_grad_(True)
        
        in_dim = self.mllm.model.config.llm_config.hidden_size
        out_dim = self.grounding_encoder.mask_decoder.transformer_dim
        self.text_hidden_fcs = nn.Sequential(
            nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
            nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
        )

        self.loss_mask = BUILDER.build(loss_mask)
        self.loss_dice = BUILDER.build(loss_dice)
        
    def _add_special_tokens(self):
        special_tokens = ['[SEG]']
        num_new_tokens = self.tokenizer.add_tokens(
            special_tokens, special_tokens=True)
        if num_new_tokens > 0:
            self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer))

        self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]

    def _generate_and_postprocess_masks(self, pred_embeddings, image_embeddings, resize_list=None, orig_size_list=None):
        pred_masks = []
        for i, pred_embedding in enumerate(pred_embeddings):
            sparse_embeddings, dense_embeddings = self.grounding_encoder.prompt_encoder(
                points=None, boxes=None, masks=None, text_embeds=pred_embedding.unsqueeze(1)
            )
            sparse_embeddings = sparse_embeddings.to(pred_embedding.dtype)
            low_res_masks, _ = self.grounding_encoder.mask_decoder(
                image_embeddings=image_embeddings[i].unsqueeze(0),
                image_pe=self.grounding_encoder.prompt_encoder.get_dense_pe(),
                sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings,
                multimask_output=False, )
            
            pred_mask = self.grounding_encoder.postprocess_masks(
                low_res_masks, input_size=resize_list[i], original_size=orig_size_list[i], )
            pred_masks.append(pred_mask[:, 0])
        return pred_masks
    
    def load_state_dict(self, state_dict, strict: bool = True, assign: bool = False):
        return super().load_state_dict(state_dict, strict, assign)
    
    def state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)
        from collections import OrderedDict

        to_return = OrderedDict()
        # Step 1. visual_encoder
        if self.mllm.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.mllm.model.vision_model, state_dict=state_dict))
        elif not self.mllm.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'visual_encoder.' in k
            })
        # Step 2. LLM
        if self.mllm.use_llm_lora:
            to_return.update(
                get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict))
        elif not self.mllm.freeze_llm:
            to_return.update(
                {k: v
                 for k, v in state_dict.items() if 'llm.' in k})
        # Step 3. Projector
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'mlp1.' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'grounding_encoder.mask_decoder.' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'text_hidden_fcs.' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'lm_head.weight' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'embed_tokens.weight' in k})
        return to_return
    
    def forward(self, data, data_samples=None, mode='loss'):
        if mode == 'loss':
            return self.compute_loss(data)
        elif mode == 'predict':
            return self.predict(data)
        elif mode == 'tensor':
            return self._forward(data)
        else:
            raise NotImplementedError
        
    def compute_loss(self,data, data_samples=None, mode='loss'):
        g_pixel_values = data.pop('g_pixel_values', None)
        gt_masks = data.pop('masks', None)
        input_ids = data['input_ids']
        output = self.mllm(data, data_samples, mode)
        if gt_masks is None:
            g_pixel_values = [
                torch.randn(3, 512, 1024).to(output.hidden_states[-1]) 
                    for _ in range(len(input_ids))]
            ori_size_list = [(512, 1024) for _ in range(len(input_ids))]
            seg_token_mask = torch.zeros_like(input_ids).bool()
            seg_token_mask[:, -2] = True
        else:
            ori_size_list = [mask.shape[-2:] for mask in gt_masks]
            seg_token_mask = input_ids == self.seg_token_idx

        resize_list = [pixel.shape[-2:] for pixel in g_pixel_values]
        g_pixel_values = torch.stack([
            self.grounding_encoder.preprocess(pixel) for pixel in g_pixel_values
        ])
        image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values)

        seg_token_mask = seg_token_mask[:, 1:]
        seg_token_mask = torch.cat([
            seg_token_mask,
            seg_token_mask.new_zeros(seg_token_mask.shape[0], 1)], dim=-1)

        hidden_states = output.hidden_states
        hidden_states = self.text_hidden_fcs(hidden_states[-1])
        pred_embeddings = hidden_states[seg_token_mask]

        seg_token_counts = seg_token_mask.int().sum(-1)
        pred_embeddings_list = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
        
        pred_masks = self._generate_and_postprocess_masks(
            pred_embeddings_list, image_embeddings, resize_list, ori_size_list)
        
        if gt_masks is None:
            return {
                'loss_mask': pred_masks[0].sum() * 0.0,
                'loss_dice': pred_masks[0].sum() * 0.0,
                'llm_loss': output.loss,
            }
        bs = len(pred_masks)
        loss_mask, loss_dice = 0, 0
        for i in range(bs):
            pred_mask = pred_masks[i]
            gt_mask = gt_masks[i]

            sam_loss_mask = self.loss_mask(pred_mask, gt_mask)
            sam_loss_dice = self.loss_dice(pred_mask, gt_mask)
            accuracy = torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean()
            loss_mask += sam_loss_mask
            loss_dice += sam_loss_dice

        loss_dict = {
            'loss_mask': loss_mask / bs,
            'loss_dice': loss_dice / bs,
            'llm_loss': output.loss,
        }
        return loss_dict

    def predict(self, data):
        generation_config = dict(max_new_tokens=1024, do_sample=False)
        eos_token_id = self.tokenizer.convert_tokens_to_ids('<|end|>')
        generation_config['eos_token_id'] = eos_token_id
        pixel_values = data.pop('pixel_values')
        attention_mask = data.pop('attention_mask', None)
        input_ids = data['input_ids']
        generate_output = self.mllm.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict_in_generate=True,
            **generation_config,
        )
        device = self.mllm.model.device

        hidden_states = generate_output.hidden_states
        last_hidden_states = [item[-1] for item in hidden_states[1:]] # remove input_ids
        last_hidden_states = torch.cat(last_hidden_states, dim=1)
        last_hidden_states = last_hidden_states[0] # remove batch dim
        output_ids = generate_output.sequences[0][:-1] # remove batch dim and eos token
        output_text = self.tokenizer.decode(output_ids)
        seg_mask = output_ids == self.seg_token_idx
        if seg_mask.sum() == 0:
            return dict(
                pred_mask_logits=None,
                output_text=output_text,
            )
        seg_embeds = self.text_hidden_fcs(last_hidden_states[seg_mask])
        
        g_pixel_values = data.pop('g_pixel_values', None)
        gt_masks = data['masks']
        
        ori_size_list = [mask.shape[-2:] for mask in gt_masks]
        resize_list = [pixel.shape[-2:] for pixel in g_pixel_values]
        g_pixel_values = torch.stack([
            self.grounding_encoder.preprocess(pixel.to(device)) for pixel in g_pixel_values
        ])
        image_embeddings = self.grounding_encoder.image_encoder(g_pixel_values)
        pred_masks = self._generate_and_postprocess_masks(
            [seg_embeds], image_embeddings, resize_list, ori_size_list)
        
        return dict(
            pred_mask_logits=pred_masks[0], # remove batch dim
            output_text=output_text,
        )

    def gradient_checkpointing_enable(self):
        self.activation_checkpointing_enable()

    def activation_checkpointing_enable(self):
        self.mllm.model.language_model.gradient_checkpointing_enable()

    def gradient_checkpointing_disable(self):
        self.activation_checkpointing_disable()

    def activation_checkpointing_disable(self):
        self.mllm.model.language_model.gradient_checkpointing_disable()