import inspect import math from typing import Callable, List, Optional, Union import torch import torch.nn.functional as F from torch import nn from diffusers.image_processor import IPAdapterMaskProcessor from diffusers.utils import deprecate, logging from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.attention_processor import Attention logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_torch_npu_available(): import torch_npu if is_xformers_available(): import xformers import xformers.ops else: xformers = None class AttnProcessor: r""" Default processor for performing attention-related computations. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AttnProcessor2_0(nn.Module): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, ip_adapter_masks: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAdapterAttnProcessor(nn.Module): r""" Attention processor for Multiple IP-Adapters. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or List[`float`], defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAdapterAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapter for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): ip_hidden_states[index] = ip_state = ip_state.unsqueeze(1) if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 _current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states