import os import numpy as np import random from PIL import Image import torch from torch.utils.data import Dataset import torchvision.transforms as transforms from transformers import CLIPImageProcessor # import librosa import os import cv2 mean_face_lm5p_256 = np.array([ [(30.2946+8)*2+16, 51.6963*2], [(65.5318+8)*2+16, 51.5014*2], [(48.0252+8)*2+16, 71.7366*2], [(33.5493+8)*2+16, 92.3655*2], [(62.7299+8)*2+16, 92.2041*2], ], dtype=np.float32) def get_affine_transform(target_face_lm5p, mean_lm5p): mat_warp = np.zeros((2,3)) A = np.zeros((4,4)) B = np.zeros((4)) for i in range(5): A[0][0] += target_face_lm5p[i][0] * target_face_lm5p[i][0] + target_face_lm5p[i][1] * target_face_lm5p[i][1] A[0][2] += target_face_lm5p[i][0] A[0][3] += target_face_lm5p[i][1] B[0] += target_face_lm5p[i][0] * mean_lm5p[i][0] + target_face_lm5p[i][1] * mean_lm5p[i][1] #sb[1] += a[i].x*b[i].y - a[i].y*b[i].x; B[1] += target_face_lm5p[i][0] * mean_lm5p[i][1] - target_face_lm5p[i][1] * mean_lm5p[i][0] B[2] += mean_lm5p[i][0] B[3] += mean_lm5p[i][1] A[1][1] = A[0][0] A[2][1] = A[1][2] = -A[0][3] A[3][1] = A[1][3] = A[2][0] = A[0][2] A[2][2] = A[3][3] = 5 A[3][0] = A[0][3] _, mat23 = cv2.solve(A, B, flags=cv2.DECOMP_SVD) mat_warp[0][0] = mat23[0] mat_warp[1][1] = mat23[0] mat_warp[0][1] = -mat23[1] mat_warp[1][0] = mat23[1] mat_warp[0][2] = mat23[2] mat_warp[1][2] = mat23[3] return mat_warp def get_union_bbox(bboxes): bboxes = np.array(bboxes) min_x = np.min(bboxes[:, 0]) min_y = np.min(bboxes[:, 1]) max_x = np.max(bboxes[:, 2]) max_y = np.max(bboxes[:, 3]) return np.array([min_x, min_y, max_x, max_y]) def process_bbox(bbox, expand_radio, height, width): def expand(bbox, ratio, height, width): bbox_h = bbox[3] - bbox[1] bbox_w = bbox[2] - bbox[0] expand_x1 = max(bbox[0] - ratio * bbox_w, 0) expand_y1 = max(bbox[1] - ratio * bbox_h, 0) expand_x2 = min(bbox[2] + ratio * bbox_w, width) expand_y2 = min(bbox[3] + ratio * bbox_h, height) return [expand_x1,expand_y1,expand_x2,expand_y2] def to_square(bbox_src, bbox_expend, height, width): h = bbox_expend[3] - bbox_expend[1] w = bbox_expend[2] - bbox_expend[0] c_h = (bbox_expend[1] + bbox_expend[3]) / 2 c_w = (bbox_expend[0] + bbox_expend[2]) / 2 c = min(h, w) / 2 c_src_h = (bbox_src[1] + bbox_src[3]) / 2 c_src_w = (bbox_src[0] + bbox_src[2]) / 2 s_h, s_w = 0, 0 if w < h: d = abs((h - w) / 2) s_h = min(d, abs(c_src_h-c_h)) s_h = s_h if c_src_h > c_h else s_h * (-1) else: d = abs((h - w) / 2) s_w = min(d, abs(c_src_w-c_w)) s_w = s_w if c_src_w > c_w else s_w * (-1) c_h = (bbox_expend[1] + bbox_expend[3]) / 2 + s_h c_w = (bbox_expend[0] + bbox_expend[2]) / 2 + s_w square_x1 = c_w - c square_y1 = c_h - c square_x2 = c_w + c square_y2 = c_h + c return [round(square_x1), round(square_y1), round(square_x2), round(square_y2)] bbox_expend = expand(bbox, expand_radio, height=height, width=width) processed_bbox = to_square(bbox, bbox_expend, height=height, width=width) return processed_bbox def crop_resize_img(img, bbox): x1, y1, x2, y2 = bbox img = img.crop((x1, y1, x2, y2)) return img