import os from pathlib import Path import numpy as np import torch import torchvision from einops import rearrange from PIL import Image import imageio def seed_everything(seed): import random import numpy as np torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed % (2**32)) random.seed(seed) def save_videos_from_pil(pil_images, path, fps=8): save_fmt = Path(path).suffix os.makedirs(os.path.dirname(path), exist_ok=True) if save_fmt == ".mp4": with imageio.get_writer(path, fps=fps) as writer: for img in pil_images: img_array = np.array(img) # Convert PIL Image to numpy array writer.append_data(img_array) elif save_fmt == ".gif": pil_images[0].save( fp=path, format="GIF", append_images=pil_images[1:], save_all=True, duration=(1 / fps * 1000), loop=0, optimize=False, lossless=True ) else: raise ValueError("Unsupported file type. Use .mp4 or .gif.") def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): videos = rearrange(videos, "b c t h w -> t b c h w") height, width = videos.shape[-2:] outputs = [] for i, x in enumerate(videos): x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) x = Image.fromarray(x) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) save_videos_from_pil(outputs, path, fps)