import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) import torch from src.dataset.face_align.yoloface import YoloFace class AlignImage(object): def __init__(self, device='cuda', det_path='checkpoints/yoloface_v5m.pt'): self.facedet = YoloFace(pt_path=det_path, confThreshold=0.5, nmsThreshold=0.45, device=device) @torch.no_grad() def __call__(self, im, maxface=False): bboxes, kpss, scores = self.facedet.detect(im) face_num = bboxes.shape[0] five_pts_list = [] scores_list = [] bboxes_list = [] for i in range(face_num): five_pts_list.append(kpss[i].reshape(5,2)) scores_list.append(scores[i]) bboxes_list.append(bboxes[i]) if maxface and face_num>1: max_idx = 0 max_area = (bboxes[0, 2])*(bboxes[0, 3]) for i in range(1, face_num): area = (bboxes[i,2])*(bboxes[i,3]) if area>max_area: max_idx = i five_pts_list = [five_pts_list[max_idx]] scores_list = [scores_list[max_idx]] bboxes_list = [bboxes_list[max_idx]] return five_pts_list, scores_list, bboxes_list