import os import torch from torch import nn __all__ = ['iresnet18', 'iresnet34', 'iresnet50', 'iresnet100', 'iresnet200', 'getarcface'] def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class IBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1): super(IBasicBlock, self).__init__() if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,) self.conv1 = conv3x3(inplanes, planes) self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,) self.prelu = nn.PReLU(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.prelu(out) out = self.conv2(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity return out class IResNet(nn.Module): fc_scale = 7 * 7 def __init__(self, block, layers, dropout=0, num_features=512, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): super(IResNet, self).__init__() self.fp16 = fp16 self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) self.prelu = nn.PReLU(self.inplanes) self.layer1 = self._make_layer(block, 64, layers[0], stride=2) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,) self.dropout = nn.Dropout(p=dropout, inplace=True) self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) self.features = nn.BatchNorm1d(num_features, eps=1e-05) nn.init.constant_(self.features.weight, 1.0) self.features.weight.requires_grad = False for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, 0, 0.1) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, IBasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ), ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation)) return nn.Sequential(*layers) def forward(self, x): # with torch.cuda.amp.autocast(self.fp16): x = self.conv1(x) x = self.bn1(x) x = self.prelu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) layer4_res = x x = self.bn2(x) x = torch.flatten(x, 1) x = self.dropout(x) x = self.fc(x.float() if self.fp16 else x) y = self.features(x) return y,layer4_res def _iresnet(arch, block, layers, pretrained, progress, **kwargs): model = IResNet(block, layers, **kwargs) if pretrained: raise ValueError() return model def iresnet18(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def iresnet34(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def iresnet50(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained, progress, **kwargs) def iresnet100(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained, progress, **kwargs) def iresnet200(pretrained=False, progress=True, **kwargs): return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained, progress, **kwargs) def getarcface(pretrained=None): model = iresnet100() for param in model.parameters(): param.requires_grad=False if pretrained is not None and os.path.exists(pretrained): info = model.load_state_dict(torch.load(pretrained, map_location=lambda storage, loc: storage)) # print('insightface_glint360k', info) return model.eval() if __name__=='__main__': ckpt = 'pretrained/insightface_glint360k.pth' arcface = getarcface(ckpt)