SVFR: A Unified Framework for Generalized Video Face Restoration
[![arXiv](https://img.shields.io/badge/arXiv-2307.04725-b31b1b.svg)](https://arxiv.org/pdf/2501.01235)
[![Project Page](https://img.shields.io/badge/Project-Website-green)](https://wangzhiyaoo.github.io/SVFR/)
## 🔥 Overview
SVFR is a unified framework for face video restoration that supports tasks such as **BFR, Colorization, Inpainting**, and **their combinations** within one cohesive system.
## 🎬 Demo
### BFR
| Case1 | Case2 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| | |
### BFR+Colorization
| Case3 | Case4 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| | |
### BFR+Colorization+Inpainting
| Case5 | Case6 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| | |
## 🎙️ News
- **[2025.01.02]**: We released the initial version of the [inference code](#inference) and [models](#download-checkpoints). Stay tuned for continuous updates!
- **[2024.12.17]**: This repo is created!
## 🚀 Getting Started
> Note: It is recommended to use a GPU with 16GB or more VRAM.
## Setup
Use the following command to install a conda environment for SVFR from scratch:
```bash
conda create -n svfr python=3.9 -y
conda activate svfr
```
Install PyTorch: make sure to select the appropriate CUDA version based on your hardware, for example,
```bash
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2
```
Install Dependencies:
```bash
pip install -r requirements.txt
```
## Download checkpoints
Download the Stable Video Diffusion
```
conda install git-lfs
git lfs install
git clone https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt models/stable-video-diffusion-img2vid-xt
```
Download SVFR
You can download checkpoints manually through link on [Google Drive](https://drive.google.com/drive/folders/1nzy9Vk-yA_DwXm1Pm4dyE2o0r7V6_5mn?usp=share_link).
Put checkpoints as follows:
```
└── models
├── face_align
│ ├── yoloface_v5m.pt
├── face_restoration
│ ├── unet.pth
│ ├── id_linear.pth
│ ├── insightface_glint360k.pth
└── stable-video-diffusion-img2vid-xt
├── vae
├── scheduler
└── ...
```
## Inference
### Inference single or multi task
```
python3 infer.py \
--config config/infer.yaml \
--task_ids 0 \
--input_path ./assert/lq/lq1.mp4 \
--output_dir ./results/
```
task_id:
> 0 -- bfr
> 1 -- colorization
> 2 -- inpainting
> 0,1 -- bfr and colorization
> 0,1,2 -- bfr and colorization and inpainting
> ...
### Inference with additional inpainting mask
```
# For Inference with Inpainting
# Add '--mask_path' if you need to specify the mask file.
python3 infer.py \
--config config/infer.yaml \
--task_ids 0,1,2 \
--input_path ./assert/lq/lq3.mp4 \
--output_dir ./results/
--mask_path ./assert/mask/lq3.png
```
## License
The code of SVFR is released under the MIT License. There is no limitation for both academic and commercial usage.
**The pretrained models we provided with this library are available for non-commercial research purposes only, including both auto-downloading models and manual-downloading models.**
## Acknowledgments
This work is built on the architecture of [Sonic](https://github.com/jixiaozhong/Sonic).
## BibTex
```
@misc{wang2025svfrunifiedframeworkgeneralized,
title={SVFR: A Unified Framework for Generalized Video Face Restoration},
author={Zhiyao Wang and Xu Chen and Chengming Xu and Junwei Zhu and Xiaobin Hu and Jiangning Zhang and Chengjie Wang and Yuqi Liu and Yiyi Zhou and Rongrong Ji},
year={2025},
eprint={2501.01235},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2501.01235},
}
```