Spaces:
Running
on
L4
Running
on
L4
import gradio as gr | |
import os | |
import cv2 | |
import numpy as np | |
from moviepy.editor import * | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
import torch | |
from PIL import Image | |
import time | |
import psutil | |
import random | |
#token = os.environ.get('HF_TOKEN') | |
#pix2pix = gr.Blocks.load(name="spaces/fffiloni/instruct-pix2pix-clone", api_key=token) | |
pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.unet.to(memory_format=torch.channels_last) | |
device = "GPU π₯" if torch.cuda.is_available() else "CPU π₯Ά" | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
def pix2pix( | |
prompt, | |
text_guidance_scale, | |
image_guidance_scale, | |
image, | |
steps, | |
neg_prompt="", | |
width=512, | |
height=512, | |
seed=0, | |
): | |
print(psutil.virtual_memory()) # print memory usage | |
if seed == 0: | |
seed = random.randint(0, 2147483647) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
try: | |
image = Image.open(image) | |
ratio = min(height / image.height, width / image.width) | |
image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS) | |
result = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
image=image, | |
num_inference_steps=int(steps), | |
image_guidance_scale=image_guidance_scale, | |
guidance_scale=text_guidance_scale, | |
generator=generator, | |
) | |
# return replace_nsfw_images(result) | |
return result.images, result.nsfw_content_detected, seed | |
except Exception as e: | |
return None, None, error_str(e) | |
def error_str(error, title="Error"): | |
return ( | |
f"""#### {title} | |
{error}""" | |
if error | |
else "" | |
) | |
def get_frames(video_in): | |
frames = [] | |
#resize the video | |
clip = VideoFileClip(video_in) | |
#check fps | |
if clip.fps > 30: | |
print("vide rate is over 30, resetting to 30") | |
clip_resized = clip.resize(height=512) | |
clip_resized.write_videofile("video_resized.mp4", fps=30) | |
else: | |
print("video rate is OK") | |
clip_resized = clip.resize(height=512) | |
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) | |
print("video resized to 512 height") | |
# Opens the Video file with CV2 | |
cap= cv2.VideoCapture("video_resized.mp4") | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
print("video fps: " + str(fps)) | |
i=0 | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret == False: | |
break | |
cv2.imwrite('kang'+str(i)+'.jpg',frame) | |
frames.append('kang'+str(i)+'.jpg') | |
i+=1 | |
cap.release() | |
cv2.destroyAllWindows() | |
print("broke the video into frames") | |
return frames, fps | |
def create_video(frames, fps): | |
print("building video result") | |
clip = ImageSequenceClip(frames, fps=fps) | |
clip.write_videofile("movie.mp4", fps=fps) | |
return 'movie.mp4' | |
def infer(prompt,video_in, seed_in, trim_value): | |
print(prompt) | |
break_vid = get_frames(video_in) | |
frames_list= break_vid[0] | |
fps = break_vid[1] | |
n_frame = int(trim_value*fps) | |
if n_frame >= len(frames_list): | |
print("video is shorter than the cut value") | |
n_frame = len(frames_list) | |
result_frames = [] | |
print("set stop frames to: " + str(n_frame)) | |
for i in frames_list[0:int(n_frame)]: | |
pix2pix_img = pix2pix(prompt,5.5,1.5,i,15,"",512,512,seed_in) | |
images = pix2pix_img[0] | |
rgb_im = images[0].convert("RGB") | |
# exporting the image | |
rgb_im.save(f"result_img-{i}.jpg") | |
result_frames.append(f"result_img-{i}.jpg") | |
print("frame " + i + ": done;") | |
final_vid = create_video(result_frames, fps) | |
print("finished !") | |
return final_vid, gr.Group.update(visible=True) | |
title = """ | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
Pix2Pix Video | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Apply Instruct Pix2Pix Diffusion to a video | |
</p> | |
</div> | |
""" | |
article = """ | |
<div class="footer"> | |
<p> | |
Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates π€ | |
</p> | |
</div> | |
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;"> | |
<p>You may also like: </p> | |
<div id="may-like-content" style="display:flex;flex-wrap: wrap;align-items:center;height:20px;"> | |
<svg height="20" width="162" style="margin-left:4px;margin-bottom: 6px;"> | |
<a href="https://huggingface.co/spaces/timbrooks/instruct-pix2pix" target="_blank"> | |
<image href="https://img.shields.io/badge/π€ Spaces-Instruct_Pix2Pix-blue" src="https://img.shields.io/badge/π€ Spaces-Instruct_Pix2Pix-blue.png" height="20"/> | |
</a> | |
</svg> | |
</div> | |
</div> | |
""" | |
with gr.Blocks(css='style.css') as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=False, elem_id="prompt-in") | |
video_inp = gr.Video(label="Video source", source="upload", type="filepath", include_audio=False, elem_id="input-vid") | |
with gr.Row(): | |
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456) | |
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=3, step=1, value=1) | |
with gr.Column(): | |
gr.HTML(""" | |
<a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> | |
work with longer videos / skip the queue: | |
""", elem_id="duplicate-container") | |
video_out = gr.Video(label="Pix2pix video result", elem_id="video-output") | |
submit_btn = gr.Button("Generate Pix2Pix video") | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
gr.HTML(article) | |
inputs = [prompt,video_inp,seed_inp, trim_in] | |
outputs = [video_out, share_group] | |
submit_btn.click(infer, inputs, outputs) | |
share_button.click(None, [], [], _js=share_js) | |
demo.launch().queue(max_size=12) | |