import gradio as gr import torch from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda") hf_token = os.environ.get('HF_TOKEN') from gradio_client import Client client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token) def infer(image_input): #img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(image_input).convert('RGB') # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) print(caption) llama_q = f""" I'll give you a simple image caption, from i want you to provide a story that would fit well with the image. Here's the music description : {caption} """ result = client.predict( llama_q, # str in 'Message' Textbox component api_name="/predict" ) print(f"Llama2 result: {result}") return caption, result css=""" #col-container {max-width: 910px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """ # Image to Story Upload an image, get a story !

[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co/spaces/fffiloni/SplitTrack2MusicGen?duplicate=true) for longer audio, more control and no queue.

""" ) image_in = gr.Image(label="Image input", type="filepath") submit_btn = gr.Button('Sumbit') caption = gr.Textbox(label="Generated Caption") story = gr.Textbox(label="generated Story") submit_btn.click(fn=infer, inputs=[image_in], outputs=[caption, story]) demo.queue().launch()