import argparse import torch from PIL import Image import json import os import numpy as np from sklearn.metrics import roc_auc_score, average_precision_score from tqdm import tqdm from gazelle.model import get_gazelle_model parser = argparse.ArgumentParser() parser.add_argument("--data_path", type=str, default="./data/videoattentiontarget") parser.add_argument("--model_name", type=str, default="gazelle_dinov2_vitl14_inout") parser.add_argument("--ckpt_path", type=str, default="./checkpoints/gazelle_dinov2_vitl14_inout.pt") parser.add_argument("--batch_size", type=int, default=64) args = parser.parse_args() class VideoAttentionTarget(torch.utils.data.Dataset): def __init__(self, path, img_transform): self.sequences = json.load(open(os.path.join(path, "test_preprocessed.json"), "rb")) self.frames = [] for i in range(len(self.sequences)): for j in range(len(self.sequences[i]['frames'])): self.frames.append((i, j)) self.path = path self.transform = img_transform def __getitem__(self, idx): seq_idx, frame_idx = self.frames[idx] seq = self.sequences[seq_idx] frame = seq['frames'][frame_idx] image = self.transform(Image.open(os.path.join(self.path, frame['path'])).convert("RGB")) bboxes = [head['bbox_norm'] for head in frame['heads']] gazex = [head['gazex_norm'] for head in frame['heads']] gazey = [head['gazey_norm'] for head in frame['heads']] inout = [head['inout'] for head in frame['heads']] return image, bboxes, gazex, gazey, inout def __len__(self): return len(self.frames) def collate(batch): images, bboxes, gazex, gazey, inout = zip(*batch) return torch.stack(images), list(bboxes), list(gazex), list(gazey), list(inout) # VideoAttentionTarget calculates AUC on 64x64 heatmap, defining a rectangular tolerance region of 6*(sigma=3) + 1 (uses 2D Gaussian code but binary thresholds > 0 resulting in rectangle) # References: # https://github.com/ejcgt/attention-target-detection/blob/acd264a3c9e6002b71244dea8c1873e5c5818500/eval_on_videoatttarget.py#L106 # https://github.com/ejcgt/attention-target-detection/blob/acd264a3c9e6002b71244dea8c1873e5c5818500/utils/imutils.py#L31 def vat_auc(heatmap, gt_gazex, gt_gazey): res = 64 sigma = 3 assert heatmap.shape[0] == res and heatmap.shape[1] == res target_map = np.zeros((res, res)) gazex = gt_gazex * res gazey = gt_gazey * res ul = [max(0, int(gazex - 3 * sigma)), max(0, int(gazey - 3 * sigma))] br = [min(int(gazex + 3 * sigma + 1), res-1), min(int(gazey + 3 * sigma + 1), res-1)] target_map[ul[1]:br[1], ul[0]:br[0]] = 1 auc = roc_auc_score(target_map.flatten(), heatmap.cpu().flatten()) return auc # Reference: https://github.com/ejcgt/attention-target-detection/blob/acd264a3c9e6002b71244dea8c1873e5c5818500/eval_on_videoatttarget.py#L118 def vat_l2(heatmap, gt_gazex, gt_gazey): argmax = heatmap.flatten().argmax().item() pred_y, pred_x = np.unravel_index(argmax, (64, 64)) pred_x = pred_x / 64. pred_y = pred_y / 64. l2 = np.sqrt((pred_x - gt_gazex)**2 + (pred_y - gt_gazey)**2) return l2 @torch.no_grad() def main(): device = "cuda" if torch.cuda.is_available() else "cpu" print("Running on {}".format(device)) model, transform = get_gazelle_model(args.model_name) model.load_gazelle_state_dict(torch.load(args.ckpt_path, weights_only=True)) model.to(device) model.eval() dataset = VideoAttentionTarget(args.data_path, transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, collate_fn=collate) aucs = [] l2s = [] inout_preds = [] inout_gts = [] for _, (images, bboxes, gazex, gazey, inout) in tqdm(enumerate(dataloader), desc="Evaluating", total=len(dataloader)): preds = model.forward({"images": images.to(device), "bboxes": bboxes}) # eval each instance (head) for i in range(images.shape[0]): # per image for j in range(len(bboxes[i])): # per head if inout[i][j] == 1: # in frame auc = vat_auc(preds['heatmap'][i][j], gazex[i][j][0], gazey[i][j][0]) l2 = vat_l2(preds['heatmap'][i][j], gazex[i][j][0], gazey[i][j][0]) aucs.append(auc) l2s.append(l2) inout_preds.append(preds['inout'][i][j].item()) inout_gts.append(inout[i][j]) print("AUC: {}".format(np.array(aucs).mean())) print("Avg L2: {}".format(np.array(l2s).mean())) print("Inout AP: {}".format(average_precision_score(inout_gts, inout_preds))) if __name__ == "__main__": main()