Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import torch | |
from PIL import Image | |
import json | |
import os | |
import numpy as np | |
from sklearn.metrics import roc_auc_score | |
from tqdm import tqdm | |
from gazelle.model import get_gazelle_model | |
from gazelle.model import GazeLLE | |
from gazelle.backbone import DinoV2Backbone | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--data_path", type=str, default="./data/gazefollow") | |
parser.add_argument("--model_name", type=str, default="gazelle_dinov2_vitl14_inout") | |
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/gazelle_dinov2_vitl14_inout.pt") | |
parser.add_argument("--batch_size", type=int, default=128) | |
args = parser.parse_args() | |
class GazeFollow(torch.utils.data.Dataset): | |
def __init__(self, path, img_transform): | |
self.images = json.load(open(os.path.join(path, "test_preprocessed.json"), "rb")) | |
self.path = path | |
self.transform = img_transform | |
def __getitem__(self, idx): | |
item = self.images[idx] | |
image = self.transform(Image.open(os.path.join(self.path, item['path'])).convert("RGB")) | |
height = item['height'] | |
width = item['width'] | |
bboxes = [head['bbox_norm'] for head in item['heads']] | |
gazex = [head['gazex_norm'] for head in item['heads']] | |
gazey = [head['gazey_norm'] for head in item['heads']] | |
return image, bboxes, gazex, gazey, height, width | |
def __len__(self): | |
return len(self.images) | |
def collate(batch): | |
images, bboxes, gazex, gazey, height, width = zip(*batch) | |
return torch.stack(images), list(bboxes), list(gazex), list(gazey), list(height), list(width) | |
# GazeFollow calculates AUC using original image size with GT (x,y) coordinates set to 1 and everything else as 0 | |
# References: | |
# https://github.com/ejcgt/attention-target-detection/blob/acd264a3c9e6002b71244dea8c1873e5c5818500/eval_on_gazefollow.py#L78 | |
# https://github.com/ejcgt/attention-target-detection/blob/acd264a3c9e6002b71244dea8c1873e5c5818500/utils/imutils.py#L67 | |
# https://github.com/ejcgt/attention-target-detection/blob/acd264a3c9e6002b71244dea8c1873e5c5818500/utils/evaluation.py#L7 | |
def gazefollow_auc(heatmap, gt_gazex, gt_gazey, height, width): | |
target_map = np.zeros((height, width)) | |
for point in zip(gt_gazex, gt_gazey): | |
if point[0] >= 0: | |
x, y = map(int, [point[0]*float(width), point[1]*float(height)]) | |
x = min(x, width - 1) | |
y = min(y, height - 1) | |
target_map[y, x] = 1 | |
resized_heatmap = torch.nn.functional.interpolate(heatmap.unsqueeze(dim=0).unsqueeze(dim=0), (height, width), mode='bilinear').squeeze() | |
auc = roc_auc_score(target_map.flatten(), resized_heatmap.cpu().flatten()) | |
return auc | |
# Reference: https://github.com/ejcgt/attention-target-detection/blob/acd264a3c9e6002b71244dea8c1873e5c5818500/eval_on_gazefollow.py#L81 | |
def gazefollow_l2(heatmap, gt_gazex, gt_gazey): | |
argmax = heatmap.flatten().argmax().item() | |
pred_y, pred_x = np.unravel_index(argmax, (64, 64)) | |
pred_x = pred_x / 64. | |
pred_y = pred_y / 64. | |
gazex = np.array(gt_gazex) | |
gazey = np.array(gt_gazey) | |
avg_l2 = np.sqrt((pred_x - gazex.mean())**2 + (pred_y - gazey.mean())**2) | |
all_l2s = np.sqrt((pred_x - gazex)**2 + (pred_y - gazey)**2) | |
min_l2 = all_l2s.min().item() | |
return avg_l2, min_l2 | |
def main(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print("Running on {}".format(device)) | |
model, transform = get_gazelle_model(args.model_name) | |
model.load_gazelle_state_dict(torch.load(args.ckpt_path, weights_only=True)) | |
model.to(device) | |
model.eval() | |
dataset = GazeFollow(args.data_path, transform) | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, collate_fn=collate) | |
aucs = [] | |
min_l2s = [] | |
avg_l2s = [] | |
for _, (images, bboxes, gazex, gazey, height, width) in tqdm(enumerate(dataloader), desc="Evaluating", total=len(dataloader)): | |
preds = model.forward({"images": images.to(device), "bboxes": bboxes}) | |
# eval each instance (head) | |
for i in range(images.shape[0]): # per image | |
for j in range(len(bboxes[i])): # per head | |
auc = gazefollow_auc(preds['heatmap'][i][j], gazex[i][j], gazey[i][j], height[i], width[i]) | |
avg_l2, min_l2 = gazefollow_l2(preds['heatmap'][i][j], gazex[i][j], gazey[i][j]) | |
aucs.append(auc) | |
avg_l2s.append(avg_l2) | |
min_l2s.append(min_l2) | |
print("AUC: {}".format(np.array(aucs).mean())) | |
print("Avg L2: {}".format(np.array(avg_l2s).mean())) | |
print("Min L2: {}".format(np.array(min_l2s).mean())) | |
if __name__ == "__main__": | |
main() |