Gaze-LLE / app.py
fffiloni's picture
Update app.py
1896087 verified
raw
history blame
7.12 kB
import gradio as gr
import torch
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import requests
from io import BytesIO
import numpy as np
# load a simple face detector
from retinaface import RetinaFace
device = "cuda" if torch.cuda.is_available() else "cpu"
# load Gaze-LLE model
model, transform = torch.hub.load("fkryan/gazelle", "gazelle_dinov2_vitl14_inout")
model.eval()
model.to(device)
def visualize_heatmap(pil_image, heatmap, bbox=None, inout_score=None):
if isinstance(heatmap, torch.Tensor):
heatmap = heatmap.detach().cpu().numpy()
heatmap = Image.fromarray((heatmap * 255).astype(np.uint8)).resize(pil_image.size, Image.Resampling.BILINEAR)
heatmap = plt.cm.jet(np.array(heatmap) / 255.)
heatmap = (heatmap[:, :, :3] * 255).astype(np.uint8)
heatmap = Image.fromarray(heatmap).convert("RGBA")
heatmap.putalpha(90)
overlay_image = Image.alpha_composite(pil_image.convert("RGBA"), heatmap)
if bbox is not None:
width, height = pil_image.size
xmin, ymin, xmax, ymax = bbox
draw = ImageDraw.Draw(overlay_image)
draw.rectangle([xmin * width, ymin * height, xmax * width, ymax * height], outline="lime", width=int(min(width, height) * 0.01))
if inout_score is not None:
text = f"in-frame: {inout_score:.2f}"
text_width = draw.textlength(text)
text_height = int(height * 0.01)
text_x = xmin * width
text_y = ymax * height + text_height
draw.text((text_x, text_y), text, fill="lime", font=ImageFont.load_default(size=int(min(width, height) * 0.05)))
return overlay_image
def visualize_all(pil_image, heatmaps, bboxes, inout_scores, inout_thresh=0.5):
colors = ['lime', 'tomato', 'cyan', 'fuchsia', 'yellow']
overlay_image = pil_image.convert("RGBA")
draw = ImageDraw.Draw(overlay_image)
width, height = pil_image.size
for i in range(len(bboxes)):
bbox = bboxes[i]
xmin, ymin, xmax, ymax = bbox
color = colors[i % len(colors)]
draw.rectangle([xmin * width, ymin * height, xmax * width, ymax * height], outline=color, width=int(min(width, height) * 0.01))
if inout_scores is not None:
inout_score = inout_scores[i]
text = f"in-frame: {inout_score:.2f}"
text_width = draw.textlength(text)
text_height = int(height * 0.01)
text_x = xmin * width
text_y = ymax * height + text_height
draw.text((text_x, text_y), text, fill=color, font=ImageFont.load_default(size=int(min(width, height) * 0.05)))
if inout_scores is not None and inout_score > inout_thresh:
heatmap = heatmaps[i]
heatmap_np = heatmap.detach().cpu().numpy()
max_index = np.unravel_index(np.argmax(heatmap_np), heatmap_np.shape)
gaze_target_x = max_index[1] / heatmap_np.shape[1] * width
gaze_target_y = max_index[0] / heatmap_np.shape[0] * height
bbox_center_x = ((xmin + xmax) / 2) * width
bbox_center_y = ((ymin + ymax) / 2) * height
draw.ellipse([(gaze_target_x-5, gaze_target_y-5), (gaze_target_x+5, gaze_target_y+5)], fill=color, width=int(0.005*min(width, height)))
draw.line([(bbox_center_x, bbox_center_y), (gaze_target_x, gaze_target_y)], fill=color, width=int(0.005*min(width, height)))
return overlay_image
def main(image_input, progress=gr.Progress(track_tqdm=True)):
# load image
image = Image.open(image_input)
width, height = image.size
# detect faces
resp = RetinaFace.detect_faces(np.array(image))
print(resp)
bboxes = [resp[key]["facial_area"] for key in resp.keys()]
print(bboxes)
# prepare gazelle input
img_tensor = transform(image).unsqueeze(0).to(device)
norm_bboxes = [[np.array(bbox) / np.array([width, height, width, height]) for bbox in bboxes]]
input = {
"images": img_tensor, # [num_images, 3, 448, 448]
"bboxes": norm_bboxes # [[img1_bbox1, img1_bbox2...], [img2_bbox1, img2_bbox2]...]
}
with torch.no_grad():
output = model(input)
img1_person1_heatmap = output['heatmap'][0][0] # [64, 64] heatmap
print(img1_person1_heatmap.shape)
if model.inout:
img1_person1_inout = output['inout'][0][0] # gaze in frame score (if model supports inout prediction)
print(img1_person1_inout.item())
# visualize predicted gaze heatmap for each person and gaze in/out of frame score
heatmap_results = []
for i in range(len(bboxes)):
overlay_img = visualize_heatmap(image, output['heatmap'][0][i], norm_bboxes[0][i], inout_score=output['inout'][0][i] if output['inout'] is not None else None)
heatmap_results.append(overlay_img)
# combined visualization with maximal gaze points for each person
result_gazed = visualize_all(image, output['heatmap'][0], norm_bboxes[0], output['inout'][0] if output['inout'] is not None else None, inout_thresh=0.5)
return result_gazed, heatmap_results
css="""
div#col-container{
margin: 0 auto;
max-width: 982px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders")
gr.Markdown("A transformer approach for estimating gaze targets that leverages the power of pretrained visual foundation models. Gaze-LLE provides a streamlined gaze architecture that learns only a lightweight gaze decoder on top of a frozen, pretrained visual encoder (DINOv2). Gaze-LLE learns 1-2 orders of magnitude fewer parameters than prior works and doesn't require any extra input modalities like depth and pose!")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/fkryan/gazelle">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://arxiv.org/abs/2412.09586">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/Gaze-LLE?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image Input", type="filepath")
submit_button = gr.Button("Submit")
with gr.Column():
result = gr.Image(label="Result", columns=3)
heatmaps = gr.Gallery(label="Heatmap")
submit_button.click(
fn = main,
inputs = [input_image],
outputs = [result, heatmaps]
)
demo.queue().launch(show_api=False, show_error=True)