Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,595 Bytes
9c9498f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
import torchvision.transforms as transforms
# Abstract Backbone class
class Backbone(nn.Module, ABC):
def __init__(self):
super(Backbone, self).__init__()
@abstractmethod
def forward(self, x):
pass
@abstractmethod
def get_dimension(self):
pass
@abstractmethod
def get_out_size(self, in_size):
pass
def get_transform(self):
pass
# Official DINOv2 backbones from torch hub (https://github.com/facebookresearch/dinov2#pretrained-backbones-via-pytorch-hub)
class DinoV2Backbone(Backbone):
def __init__(self, model_name):
super(DinoV2Backbone, self).__init__()
self.model = torch.hub.load('facebookresearch/dinov2', model_name)
def forward(self, x):
b, c, h, w = x.shape
out_h, out_w = self.get_out_size((h, w))
x = self.model.forward_features(x)['x_norm_patchtokens']
x = x.view(x.size(0), out_h, out_w, -1).permute(0, 3, 1, 2) # "b (out_h out_w) c -> b c out_h out_w"
return x
def get_dimension(self):
return self.model.embed_dim
def get_out_size(self, in_size):
h, w = in_size
return (h // self.model.patch_size, w // self.model.patch_size)
def get_transform(self, in_size):
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485,0.456,0.406],
std=[0.229,0.224,0.225]
),
transforms.Resize(in_size),
]) |