Spaces:
Sleeping
Sleeping
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py | |
from typing import Any, Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from diffusers.models.activations import get_activation | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.dual_transformer_2d import DualTransformer2DModel | |
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D | |
from diffusers.utils import is_torch_version, logging | |
from diffusers.utils.torch_utils import apply_freeu | |
from torch import nn | |
from .transformer_2d import Transformer2DModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def get_down_block( | |
down_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
add_downsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
transformer_layers_per_block: int = 1, | |
num_attention_heads: Optional[int] = None, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
downsample_padding: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
attention_type: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: float = 1.0, | |
cross_attention_norm: Optional[str] = None, | |
attention_head_dim: Optional[int] = None, | |
downsample_type: Optional[str] = None, | |
dropout: float = 0.0, | |
): | |
# If attn head dim is not defined, we default it to the number of heads | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
) | |
attention_head_dim = num_attention_heads | |
down_block_type = ( | |
down_block_type[7:] | |
if down_block_type.startswith("UNetRes") | |
else down_block_type | |
) | |
if down_block_type == "DownBlock2D": | |
return DownBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "CrossAttnDownBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError( | |
"cross_attention_dim must be specified for CrossAttnDownBlock2D" | |
) | |
return CrossAttnDownBlock2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
dropout=dropout, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
attention_type=attention_type, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
add_upsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
resolution_idx: Optional[int] = None, | |
transformer_layers_per_block: int = 1, | |
num_attention_heads: Optional[int] = None, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
attention_type: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: float = 1.0, | |
cross_attention_norm: Optional[str] = None, | |
attention_head_dim: Optional[int] = None, | |
upsample_type: Optional[str] = None, | |
dropout: float = 0.0, | |
) -> nn.Module: | |
# If attn head dim is not defined, we default it to the number of heads | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
) | |
attention_head_dim = num_attention_heads | |
up_block_type = ( | |
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
) | |
if up_block_type == "UpBlock2D": | |
return UpBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif up_block_type == "CrossAttnUpBlock2D": | |
if cross_attention_dim is None: | |
raise ValueError( | |
"cross_attention_dim must be specified for CrossAttnUpBlock2D" | |
) | |
return CrossAttnUpBlock2D( | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
attention_type=attention_type, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class AutoencoderTinyBlock(nn.Module): | |
""" | |
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU | |
blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
out_channels (`int`): The number of output channels. | |
act_fn (`str`): | |
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. | |
Returns: | |
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to | |
`out_channels`. | |
""" | |
def __init__(self, in_channels: int, out_channels: int, act_fn: str): | |
super().__init__() | |
act_fn = get_activation(act_fn) | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | |
act_fn, | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
act_fn, | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
) | |
self.skip = ( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) | |
if in_channels != out_channels | |
else nn.Identity() | |
) | |
self.fuse = nn.ReLU() | |
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
return self.fuse(self.conv(x) + self.skip(x)) | |
class UNetMidBlock2D(nn.Module): | |
""" | |
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
temb_channels (`int`): The number of temporal embedding channels. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
resnet_time_scale_shift (`str`, *optional*, defaults to `default`): | |
The type of normalization to apply to the time embeddings. This can help to improve the performance of the | |
model on tasks with long-range temporal dependencies. | |
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. | |
resnet_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use in the group normalization layers of the resnet blocks. | |
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. | |
resnet_pre_norm (`bool`, *optional*, defaults to `True`): | |
Whether to use pre-normalization for the resnet blocks. | |
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. | |
attention_head_dim (`int`, *optional*, defaults to 1): | |
Dimension of a single attention head. The number of attention heads is determined based on this value and | |
the number of input channels. | |
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. | |
Returns: | |
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
in_channels, height, width)`. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
attn_groups: Optional[int] = None, | |
resnet_pre_norm: bool = True, | |
add_attention: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
resnet_groups = ( | |
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
) | |
self.add_attention = add_attention | |
if attn_groups is None: | |
attn_groups = ( | |
resnet_groups if resnet_time_scale_shift == "default" else None | |
) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." | |
) | |
attention_head_dim = in_channels | |
for _ in range(num_layers): | |
if self.add_attention: | |
attentions.append( | |
Attention( | |
in_channels, | |
heads=in_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=attn_groups, | |
spatial_norm_dim=temb_channels | |
if resnet_time_scale_shift == "spatial" | |
else None, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
else: | |
attentions.append(None) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None | |
) -> torch.FloatTensor: | |
hidden_states = self.resnets[0](hidden_states, temb) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if attn is not None: | |
hidden_states = attn(hidden_states, temb=temb) | |
hidden_states = resnet(hidden_states, temb) | |
return hidden_states | |
class UNetMidBlock2DCrossAttn(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
output_scale_factor: float = 1.0, | |
cross_attention_dim: int = 1280, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
resnet_groups = ( | |
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
) | |
# support for variable transformer layers per block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
for i in range(num_layers): | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
lora_scale = ( | |
cross_attention_kwargs.get("scale", 1.0) | |
if cross_attention_kwargs is not None | |
else 1.0 | |
) | |
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states, ref_feature = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states, ref_feature = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
) | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
return hidden_states | |
class CrossAttnDownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
downsample_padding: int = 1, | |
add_downsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
additional_residuals: Optional[torch.FloatTensor] = None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
lora_scale = ( | |
cross_attention_kwargs.get("scale", 1.0) | |
if cross_attention_kwargs is not None | |
else 1.0 | |
) | |
blocks = list(zip(self.resnets, self.attentions)) | |
for i, (resnet, attn) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states, ref_feature = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states, ref_feature = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
) | |
# apply additional residuals to the output of the last pair of resnet and attention blocks | |
if i == len(blocks) - 1 and additional_residuals is not None: | |
hidden_states = hidden_states + additional_residuals | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale=lora_scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class DownBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale=scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnUpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
lora_scale = ( | |
cross_attention_kwargs.get("scale", 1.0) | |
if cross_attention_kwargs is not None | |
else 1.0 | |
) | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states, ref_feature = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states, ref_feature = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler( | |
hidden_states, upsample_size, scale=lora_scale | |
) | |
return hidden_states | |
class UpBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)] | |
) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
scale: float = 1.0, | |
) -> torch.FloatTensor: | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size, scale=scale) | |
return hidden_states | |