Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import random | |
from datetime import datetime | |
from pathlib import Path | |
from typing import List | |
import av | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision | |
from diffusers import AutoencoderKL, DDIMScheduler | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline | |
from einops import repeat | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from torchvision import transforms | |
from transformers import CLIPVisionModelWithProjection | |
from src.models.unet_2d_condition import UNet2DConditionModel | |
from src.models.unet_3d_echo import EchoUNet3DConditionModel | |
from src.models.whisper.audio2feature import load_audio_model | |
from src.pipelines.pipeline_echo_mimic_pose_acc import AudioPose2VideoPipeline | |
from src.utils.util import get_fps, read_frames, save_videos_grid, crop_and_pad | |
import sys | |
from src.models.face_locator import FaceLocator | |
from moviepy.editor import VideoFileClip, AudioFileClip | |
from facenet_pytorch import MTCNN | |
from src.utils.draw_utils import FaceMeshVisualizer | |
import pickle | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="./configs/prompts/animation_pose_acc.yaml") | |
parser.add_argument("-W", type=int, default=512) | |
parser.add_argument("-H", type=int, default=512) | |
parser.add_argument("-L", type=int, default=160) | |
parser.add_argument("--seed", type=int, default=420) | |
parser.add_argument("--facemusk_dilation_ratio", type=float, default=0.1) | |
parser.add_argument("--facecrop_dilation_ratio", type=float, default=0.5) | |
parser.add_argument("--context_frames", type=int, default=12) | |
parser.add_argument("--context_overlap", type=int, default=3) | |
parser.add_argument("--cfg", type=float, default=1.0) | |
parser.add_argument("--steps", type=int, default=6) | |
parser.add_argument("--sample_rate", type=int, default=16000) | |
parser.add_argument("--fps", type=int, default=24) | |
parser.add_argument("--device", type=str, default="cuda") | |
args = parser.parse_args() | |
return args | |
def select_face(det_bboxes, probs): | |
## max face from faces that the prob is above 0.8 | |
## box: xyxy | |
filtered_bboxes = [] | |
for bbox_i in range(len(det_bboxes)): | |
if probs[bbox_i] > 0.8: | |
filtered_bboxes.append(det_bboxes[bbox_i]) | |
if len(filtered_bboxes) == 0: | |
return None | |
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True) | |
return sorted_bboxes[0] | |
def main(): | |
args = parse_args() | |
config = OmegaConf.load(args.config) | |
if config.weight_dtype == "fp16": | |
weight_dtype = torch.float16 | |
else: | |
weight_dtype = torch.float32 | |
device = args.device | |
if device.__contains__("cuda") and not torch.cuda.is_available(): | |
device = "cpu" | |
inference_config_path = config.inference_config | |
infer_config = OmegaConf.load(inference_config_path) | |
############# model_init started ############# | |
## vae init | |
vae = AutoencoderKL.from_pretrained( | |
config.pretrained_vae_path, | |
).to("cuda", dtype=weight_dtype) | |
## reference net init | |
reference_unet = UNet2DConditionModel.from_pretrained( | |
config.pretrained_base_model_path, | |
subfolder="unet", | |
).to(dtype=weight_dtype, device=device) | |
reference_unet.load_state_dict( | |
torch.load(config.reference_unet_path, map_location="cpu"), | |
) | |
## denoising net init | |
if os.path.exists(config.motion_module_path): | |
### stage1 + stage2 | |
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( | |
config.pretrained_base_model_path, | |
config.motion_module_path, | |
subfolder="unet", | |
unet_additional_kwargs=infer_config.unet_additional_kwargs, | |
).to(dtype=weight_dtype, device=device) | |
else: | |
### only stage1 | |
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( | |
config.pretrained_base_model_path, | |
"", | |
subfolder="unet", | |
unet_additional_kwargs={ | |
"use_motion_module": False, | |
"unet_use_temporal_attention": False, | |
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim | |
} | |
).to(dtype=weight_dtype, device=device) | |
denoising_unet.load_state_dict( | |
torch.load(config.denoising_unet_path, map_location="cpu"), | |
strict=False | |
) | |
## face locator init | |
face_locator = FaceLocator(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to( | |
dtype=weight_dtype, device="cuda" | |
) | |
face_locator.load_state_dict(torch.load(config.face_locator_path)) | |
visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False) | |
### load audio processor params | |
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device) | |
### load face detector params | |
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device) | |
############# model_init finished ############# | |
width, height = args.W, args.H | |
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) | |
scheduler = DDIMScheduler(**sched_kwargs) | |
pipe = AudioPose2VideoPipeline( | |
vae=vae, | |
reference_unet=reference_unet, | |
denoising_unet=denoising_unet, | |
audio_guider=audio_processor, | |
face_locator=face_locator, | |
scheduler=scheduler, | |
) | |
pipe = pipe.to("cuda", dtype=weight_dtype) | |
date_str = datetime.now().strftime("%Y%m%d") | |
time_str = datetime.now().strftime("%H%M") | |
save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}" | |
save_dir = Path(f"output/{date_str}/{save_dir_name}") | |
save_dir.mkdir(exist_ok=True, parents=True) | |
for ref_image_path in config["test_cases"].keys(): | |
for file_path in config["test_cases"][ref_image_path]: | |
if ".wav" in file_path: | |
audio_path = file_path | |
else: | |
pose_dir = file_path | |
if args.seed is not None and args.seed > -1: | |
generator = torch.manual_seed(args.seed) | |
else: | |
generator = torch.manual_seed(random.randint(100, 1000000)) | |
ref_name = Path(ref_image_path).stem | |
audio_name = Path(audio_path).stem | |
final_fps = args.fps | |
ref_image_pil = Image.open(ref_image_path).convert("RGB") | |
# ==================== face_locator ===================== | |
pose_list = [] | |
for index in range(len(os.listdir(pose_dir))): | |
tgt_musk_path = os.path.join(pose_dir, f"{index}.pkl") | |
with open(tgt_musk_path, "rb") as f: | |
tgt_kpts = pickle.load(f) | |
tgt_musk = visualizer.draw_landmarks((args.W, args.H), tgt_kpts) | |
tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB') | |
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0) | |
face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0) | |
video = pipe( | |
ref_image_pil, | |
audio_path, | |
face_mask_tensor, | |
width, | |
height, | |
args.L, | |
args.steps, | |
args.cfg, | |
generator=generator, | |
audio_sample_rate=args.sample_rate, | |
context_frames=12, | |
fps=final_fps, | |
context_overlap=3 | |
).videos | |
final_length = min(video.shape[2], face_mask_tensor.shape[2]) | |
video = torch.cat([video[:, :, :final_length, :, :], face_mask_tensor[:, :, :final_length, :, :].detach().cpu()], dim=-1) | |
save_videos_grid( | |
video, | |
f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4", | |
n_rows=2, | |
fps=final_fps, | |
) | |
from moviepy.editor import VideoFileClip, AudioFileClip | |
video_clip = VideoFileClip(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4") | |
audio_clip = AudioFileClip(audio_path) | |
video_clip = video_clip.set_audio(audio_clip) | |
video_clip.write_videofile(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4", codec="libx264", audio_codec="aac") | |
print(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4") | |
if __name__ == "__main__": | |
main() | |