Spaces:
Sleeping
Sleeping
File size: 4,574 Bytes
03a856a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import importlib
import os
import os.path as osp
import shutil
import sys
from pathlib import Path
import av
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
def seed_everything(seed):
import random
import numpy as np
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed % (2**32))
random.seed(seed)
def import_filename(filename):
spec = importlib.util.spec_from_file_location("mymodule", filename)
module = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
return module
def delete_additional_ckpt(base_path, num_keep):
dirs = []
for d in os.listdir(base_path):
if d.startswith("checkpoint-"):
dirs.append(d)
num_tot = len(dirs)
if num_tot <= num_keep:
return
# ensure ckpt is sorted and delete the ealier!
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
for d in del_dirs:
path_to_dir = osp.join(base_path, d)
if osp.exists(path_to_dir):
shutil.rmtree(path_to_dir)
def save_videos_from_pil(pil_images, path, fps=8, audio_path=None):
import av
save_fmt = Path(path).suffix
os.makedirs(os.path.dirname(path), exist_ok=True)
width, height = pil_images[0].size
if save_fmt == ".mp4":
codec = "libx264"
container = av.open(path, "w")
stream = container.add_stream(codec, rate=fps)
stream.width = width
stream.height = height
for pil_image in pil_images:
# pil_image = Image.fromarray(image_arr).convert("RGB")
av_frame = av.VideoFrame.from_image(pil_image)
container.mux(stream.encode(av_frame))
container.mux(stream.encode())
container.close()
elif save_fmt == ".gif":
pil_images[0].save(
fp=path,
format="GIF",
append_images=pil_images[1:],
save_all=True,
duration=(1 / fps * 1000),
loop=0,
)
else:
raise ValueError("Unsupported file type. Use .mp4 or .gif.")
def save_videos_grid(videos: torch.Tensor, path: str, audio_path=None, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
height, width = videos.shape[-2:]
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
x = Image.fromarray(x)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
save_videos_from_pil(outputs, path, fps, audio_path=audio_path)
def read_frames(video_path):
container = av.open(video_path)
video_stream = next(s for s in container.streams if s.type == "video")
frames = []
for packet in container.demux(video_stream):
for frame in packet.decode():
image = Image.frombytes(
"RGB",
(frame.width, frame.height),
frame.to_rgb().to_ndarray(),
)
frames.append(image)
return frames
def get_fps(video_path):
container = av.open(video_path)
video_stream = next(s for s in container.streams if s.type == "video")
fps = video_stream.average_rate
container.close()
return fps
def crop_and_pad(image, rect):
x0, y0, x1, y1 = rect
h, w = image.shape[:2]
# 确保坐标在图像范围内
x0, y0 = max(0, x0), max(0, y0)
x1, y1 = min(w, x1), min(h, y1)
# 计算原始框的宽度和高度
width = x1 - x0
height = y1 - y0
# 使用较小的边长作为裁剪正方形的边长
side_length = min(width, height)
# 计算正方形框中心点
center_x = (x0 + x1) // 2
center_y = (y0 + y1) // 2
# 重新计算正方形框的坐标
new_x0 = max(0, center_x - side_length // 2)
new_y0 = max(0, center_y - side_length // 2)
new_x1 = min(w, new_x0 + side_length)
new_y1 = min(h, new_y0 + side_length)
# 最终裁剪框的尺寸修正(确保是正方形)
if (new_x1 - new_x0) != (new_y1 - new_y0):
side_length = min(new_x1 - new_x0, new_y1 - new_y0)
new_x1 = new_x0 + side_length
new_y1 = new_y0 + side_length
# 裁剪图像
cropped_image = image[new_y0:new_y1, new_x0:new_x1]
return cropped_image |