fffiloni commited on
Commit
ef5add3
·
verified ·
1 Parent(s): 192f60f

complete memory management

Browse files
Files changed (1) hide show
  1. app.py +45 -3
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import os
3
  import torch
 
4
  from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
5
  from diffusers.utils import export_to_video, load_image
6
  from transformers import T5EncoderModel, T5Tokenizer
@@ -25,17 +26,54 @@ hf_hub_download(
25
  local_dir="checkpoints"
26
  )
27
 
28
-
29
  model_id = "THUDM/CogVideoX-5b-I2V"
30
  transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
31
  text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
32
  vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
33
  tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
34
  pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
35
- lora_path = "your lora path"
36
- lora_rank = 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
 
39
  lora_path = "checkpoints/"
40
  adapter_name = None
41
  if orbit_type == "Left":
@@ -64,10 +102,14 @@ def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True))
64
  use_dynamic_cfg=True,
65
  generator=torch.Generator(device="cpu").manual_seed(seed)
66
  )
 
 
 
67
 
68
  # Generate a timestamp for the output filename
69
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
70
  export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
 
71
  return f"output_{timestamp}.mp4"
72
 
73
  with gr.Blocks() as demo:
 
1
  import gradio as gr
2
  import os
3
  import torch
4
+ import gc
5
  from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
6
  from diffusers.utils import export_to_video, load_image
7
  from transformers import T5EncoderModel, T5Tokenizer
 
26
  local_dir="checkpoints"
27
  )
28
 
 
29
  model_id = "THUDM/CogVideoX-5b-I2V"
30
  transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
31
  text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
32
  vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
33
  tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
34
  pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
35
+
36
+ def find_and_move_object_to_cpu():
37
+ for obj in gc.get_objects():
38
+ try:
39
+ # Check if the object is a PyTorch model
40
+ if isinstance(obj, torch.nn.Module):
41
+ # Check if any parameter of the model is on CUDA
42
+ if any(param.is_cuda for param in obj.parameters()):
43
+ print(f"Found PyTorch model on CUDA: {type(obj).__name__}")
44
+ # Move the model to CPU
45
+ obj.to('cpu')
46
+ print(f"Moved {type(obj).__name__} to CPU.")
47
+
48
+ # Optionally check if buffers are on CUDA
49
+ if any(buf.is_cuda for buf in obj.buffers()):
50
+ print(f"Found buffer on CUDA in {type(obj).__name__}")
51
+ obj.to('cpu')
52
+ print(f"Moved buffers of {type(obj).__name__} to CPU.")
53
+
54
+ except Exception as e:
55
+ # Handle any exceptions if obj is not a torch model
56
+ pass
57
+
58
+
59
+ def clear_gpu():
60
+ """Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
61
+ # List memory usage before clearing
62
+ print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
63
+ print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
64
+
65
+ # Move any bound tensors back to CPU if needed
66
+ if torch.cuda.is_available():
67
+ torch.cuda.empty_cache()
68
+ torch.cuda.synchronize() # Ensure that all operations are completed
69
+ print("GPU memory cleared.")
70
+
71
+ print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
72
+ print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
73
+
74
 
75
  def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
76
+
77
  lora_path = "checkpoints/"
78
  adapter_name = None
79
  if orbit_type == "Left":
 
102
  use_dynamic_cfg=True,
103
  generator=torch.Generator(device="cpu").manual_seed(seed)
104
  )
105
+
106
+ find_and_move_object_to_cpu()
107
+ clear_gpu()
108
 
109
  # Generate a timestamp for the output filename
110
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
111
  export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
112
+
113
  return f"output_{timestamp}.mp4"
114
 
115
  with gr.Blocks() as demo: