Spaces:
Sleeping
Sleeping
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from diffusers.utils import is_torch_version | |
from diffusers.utils.torch_utils import apply_freeu | |
from diffusers.models.attention import Attention | |
from diffusers.models.dual_transformer_2d import DualTransformer2DModel | |
from diffusers.models.resnet import ( | |
Downsample2D, | |
ResnetBlock2D, | |
SpatioTemporalResBlock, | |
TemporalConvLayer, | |
Upsample2D, | |
) | |
from diffusers.models.transformer_2d import Transformer2DModel | |
from .transformer_temporal import ( | |
TransformerSpatioTemporalModel, | |
TransformerTemporalModel, | |
) | |
from einops import rearrange | |
def get_down_block( | |
down_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
add_downsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
num_attention_heads: int, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
downsample_padding: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = True, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
transformer_layers_per_block: int = 1, | |
) -> Union[ | |
"DownBlock3D", | |
"CrossAttnDownBlock3D", | |
"DownBlockMotion", | |
"CrossAttnDownBlockMotion", | |
"DownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
]: | |
if down_block_type == "DownBlock3D": | |
return DownBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "CrossAttnDownBlock3D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") | |
return CrossAttnDownBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
if down_block_type == "DownBlockMotion": | |
return DownBlockMotion( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temporal_num_attention_heads=temporal_num_attention_heads, | |
temporal_max_seq_length=temporal_max_seq_length, | |
) | |
elif down_block_type == "CrossAttnDownBlockMotion": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMotion") | |
return CrossAttnDownBlockMotion( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temporal_num_attention_heads=temporal_num_attention_heads, | |
temporal_max_seq_length=temporal_max_seq_length, | |
) | |
elif down_block_type == "DownBlockSpatioTemporal": | |
# added for SDV | |
return DownBlockSpatioTemporal( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
add_downsample=add_downsample, | |
) | |
elif down_block_type == "CrossAttnDownBlockSpatioTemporal": | |
# added for SDV | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal") | |
return CrossAttnDownBlockSpatioTemporal( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
add_downsample=add_downsample, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
add_upsample: bool, | |
resnet_eps: float, | |
resnet_act_fn: str, | |
num_attention_heads: int, | |
resolution_idx: Optional[int] = None, | |
resnet_groups: Optional[int] = None, | |
cross_attention_dim: Optional[int] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = True, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
temporal_num_attention_heads: int = 8, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_max_seq_length: int = 32, | |
transformer_layers_per_block: int = 1, | |
dropout: float = 0.0, | |
) -> Union[ | |
"UpBlock3D", | |
"CrossAttnUpBlock3D", | |
"UpBlockMotion", | |
"CrossAttnUpBlockMotion", | |
"UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
]: | |
if up_block_type == "UpBlock3D": | |
return UpBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resolution_idx=resolution_idx, | |
) | |
elif up_block_type == "CrossAttnUpBlock3D": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") | |
return CrossAttnUpBlock3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resolution_idx=resolution_idx, | |
) | |
if up_block_type == "UpBlockMotion": | |
return UpBlockMotion( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resolution_idx=resolution_idx, | |
temporal_num_attention_heads=temporal_num_attention_heads, | |
temporal_max_seq_length=temporal_max_seq_length, | |
) | |
elif up_block_type == "CrossAttnUpBlockMotion": | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMotion") | |
return CrossAttnUpBlockMotion( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
add_upsample=add_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resolution_idx=resolution_idx, | |
temporal_num_attention_heads=temporal_num_attention_heads, | |
temporal_max_seq_length=temporal_max_seq_length, | |
) | |
elif up_block_type == "UpBlockSpatioTemporal": | |
# added for SDV | |
return UpBlockSpatioTemporal( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
resolution_idx=resolution_idx, | |
add_upsample=add_upsample, | |
) | |
elif up_block_type == "CrossAttnUpBlockSpatioTemporal": | |
# added for SDV | |
if cross_attention_dim is None: | |
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal") | |
return CrossAttnUpBlockSpatioTemporal( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
prev_output_channel=prev_output_channel, | |
temb_channels=temb_channels, | |
num_layers=num_layers, | |
transformer_layers_per_block=transformer_layers_per_block, | |
add_upsample=add_upsample, | |
cross_attention_dim=cross_attention_dim, | |
num_attention_heads=num_attention_heads, | |
resolution_idx=resolution_idx, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class UNetMidBlock3DCrossAttn(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
output_scale_factor: float = 1.0, | |
cross_attention_dim: int = 1280, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = True, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
temp_convs = [ | |
TemporalConvLayer( | |
in_channels, | |
in_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
] | |
attentions = [] | |
temp_attentions = [] | |
for _ in range(num_layers): | |
attentions.append( | |
Transformer2DModel( | |
in_channels // num_attention_heads, | |
num_attention_heads, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
) | |
) | |
temp_attentions.append( | |
TransformerTemporalModel( | |
in_channels // num_attention_heads, | |
num_attention_heads, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
TemporalConvLayer( | |
in_channels, | |
in_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.attentions = nn.ModuleList(attentions) | |
self.temp_attentions = nn.ModuleList(temp_attentions) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
) -> torch.FloatTensor: | |
hidden_states = self.resnets[0](hidden_states, temb) | |
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames) | |
for attn, temp_attn, resnet, temp_conv in zip( | |
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:] | |
): | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
hidden_states = temp_attn( | |
hidden_states, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
return hidden_states | |
class CrossAttnDownBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
downsample_padding: int = 1, | |
add_downsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
temp_attentions = [] | |
temp_convs = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
TemporalConvLayer( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
attentions.append( | |
Transformer2DModel( | |
out_channels // num_attention_heads, | |
num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
) | |
) | |
temp_attentions.append( | |
TransformerTemporalModel( | |
out_channels // num_attention_heads, | |
num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.attentions = nn.ModuleList(attentions) | |
self.temp_attentions = nn.ModuleList(temp_attentions) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
# TODO(Patrick, William) - attention mask is not used | |
output_states = () | |
for resnet, temp_conv, attn, temp_attn in zip( | |
self.resnets, self.temp_convs, self.attentions, self.temp_attentions | |
): | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
hidden_states = temp_attn( | |
hidden_states, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class DownBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
TemporalConvLayer( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
for resnet, temp_conv in zip(self.resnets, self.temp_convs): | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
output_states += (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnUpBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
resolution_idx: Optional[int] = None, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
attentions = [] | |
temp_attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
TemporalConvLayer( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
attentions.append( | |
Transformer2DModel( | |
out_channels // num_attention_heads, | |
num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
) | |
) | |
temp_attentions.append( | |
TransformerTemporalModel( | |
out_channels // num_attention_heads, | |
num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
self.attentions = nn.ModuleList(attentions) | |
self.temp_attentions = nn.ModuleList(temp_attentions) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
) -> torch.FloatTensor: | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
# TODO(Patrick, William) - attention mask is not used | |
for resnet, temp_conv, attn, temp_attn in zip( | |
self.resnets, self.temp_convs, self.attentions, self.temp_attentions | |
): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
hidden_states = temp_attn( | |
hidden_states, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class UpBlock3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
resolution_idx: Optional[int] = None, | |
): | |
super().__init__() | |
resnets = [] | |
temp_convs = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
temp_convs.append( | |
TemporalConvLayer( | |
out_channels, | |
out_channels, | |
dropout=0.1, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.temp_convs = nn.ModuleList(temp_convs) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size: Optional[int] = None, | |
num_frames: int = 1, | |
) -> torch.FloatTensor: | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
for resnet, temp_conv in zip(self.resnets, self.temp_convs): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class DownBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
temporal_num_attention_heads: int = 1, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_max_seq_length: int = 32, | |
): | |
super().__init__() | |
resnets = [] | |
motion_modules = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
motion_modules.append( | |
TransformerTemporalModel( | |
num_attention_heads=temporal_num_attention_heads, | |
in_channels=out_channels, | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
num_frames: int = 1, | |
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
blocks = zip(self.resnets, self.motion_modules) | |
for resnet, motion_module in blocks: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, scale | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(motion_module), | |
hidden_states.requires_grad_(), | |
temb, | |
num_frames, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
hidden_states = motion_module(hidden_states, num_frames=num_frames)[0] | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale=scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnDownBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
downsample_padding: int = 1, | |
add_downsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
motion_modules = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
motion_modules.append( | |
TransformerTemporalModel( | |
num_attention_heads=temporal_num_attention_heads, | |
in_channels=out_channels, | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
additional_residuals: Optional[torch.FloatTensor] = None, | |
): | |
output_states = () | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
blocks = list(zip(self.resnets, self.attentions, self.motion_modules)) | |
for i, (resnet, attn, motion_module) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = motion_module( | |
hidden_states, | |
num_frames=num_frames, | |
)[0] | |
# apply additional residuals to the output of the last pair of resnet and attention blocks | |
if i == len(blocks) - 1 and additional_residuals is not None: | |
hidden_states = hidden_states + additional_residuals | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, scale=lora_scale) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnUpBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
motion_modules = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
motion_modules.append( | |
TransformerTemporalModel( | |
num_attention_heads=temporal_num_attention_heads, | |
in_channels=out_channels, | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
) -> torch.FloatTensor: | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
blocks = zip(self.resnets, self.attentions, self.motion_modules) | |
for resnet, attn, motion_module in blocks: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = motion_module( | |
hidden_states, | |
num_frames=num_frames, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale) | |
return hidden_states | |
class UpBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
temporal_norm_num_groups: int = 32, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
): | |
super().__init__() | |
resnets = [] | |
motion_modules = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
motion_modules.append( | |
TransformerTemporalModel( | |
num_attention_heads=temporal_num_attention_heads, | |
in_channels=out_channels, | |
norm_num_groups=temporal_norm_num_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
upsample_size=None, | |
scale: float = 1.0, | |
num_frames: int = 1, | |
) -> torch.FloatTensor: | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
blocks = zip(self.resnets, self.motion_modules) | |
for resnet, motion_module in blocks: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, scale=scale) | |
hidden_states = motion_module(hidden_states, num_frames=num_frames)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size, scale=scale) | |
return hidden_states | |
class UNetMidBlockCrossAttnMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
output_scale_factor: float = 1.0, | |
cross_attention_dim: int = 1280, | |
dual_cross_attention: float = False, | |
use_linear_projection: float = False, | |
upcast_attention: float = False, | |
attention_type: str = "default", | |
temporal_num_attention_heads: int = 1, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_max_seq_length: int = 32, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
motion_modules = [] | |
for _ in range(num_layers): | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
motion_modules.append( | |
TransformerTemporalModel( | |
num_attention_heads=temporal_num_attention_heads, | |
attention_head_dim=in_channels // temporal_num_attention_heads, | |
in_channels=in_channels, | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
activation_fn="geglu", | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
num_frames: int = 1, | |
) -> torch.FloatTensor: | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) | |
blocks = zip(self.attentions, self.resnets[1:], self.motion_modules) | |
for attn, resnet, motion_module in blocks: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(motion_module), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = motion_module( | |
hidden_states, | |
num_frames=num_frames, | |
)[0] | |
hidden_states = resnet(hidden_states, temb, scale=lora_scale) | |
return hidden_states | |
class MidBlockTemporalDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
attention_head_dim: int = 512, | |
num_layers: int = 1, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
temb_channels=None, | |
eps=1e-6, | |
temporal_eps=1e-5, | |
merge_factor=0.0, | |
merge_strategy="learned", | |
switch_spatial_to_temporal_mix=True, | |
) | |
) | |
attentions.append( | |
Attention( | |
query_dim=in_channels, | |
heads=in_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
eps=1e-6, | |
upcast_attention=upcast_attention, | |
norm_num_groups=32, | |
bias=True, | |
residual_connection=True, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
image_only_indicator: torch.FloatTensor, | |
): | |
hidden_states = self.resnets[0]( | |
hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
for resnet, attn in zip(self.resnets[1:], self.attentions): | |
hidden_states = attn(hidden_states) | |
hidden_states = resnet( | |
hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
return hidden_states | |
class UpBlockTemporalDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
num_layers: int = 1, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
temb_channels=None, | |
eps=1e-6, | |
temporal_eps=1e-5, | |
merge_factor=0.0, | |
merge_strategy="learned", | |
switch_spatial_to_temporal_mix=True, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
image_only_indicator: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
hidden_states = resnet( | |
hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
class UNetMidBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
# support for variable transformer layers per block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
# there is always at least one resnet | |
resnets = [ | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=1e-5, | |
) | |
] | |
attentions = [] | |
for i in range(num_layers): | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=1e-5, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
pose_feature: Optional[torch.Tensor] = None # [bs, c, frame, h, w] | |
) -> torch.FloatTensor: | |
hidden_states = self.resnets[0]( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
pose_feature=pose_feature, | |
return_dict=False, | |
)[0] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
pose_feature=pose_feature, | |
return_dict=False, | |
)[0] | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
return hidden_states | |
class DownBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
num_layers: int = 1, | |
add_downsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=1e-5, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
) | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnDownBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
add_downsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=1e-6, | |
) | |
) | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=1, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
additional_residuals: Optional[torch.FloatTensor] = None, | |
pose_feature: Optional[torch.Tensor] = None # [bs, c, frame, h, w] | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
blocks = list(zip(self.resnets, self.attentions)) | |
for block_idx, (resnet, attn) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
pose_feature=pose_feature, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
pose_feature=pose_feature, | |
return_dict=False, | |
)[0] | |
output_states = output_states + (hidden_states,) | |
# NOTE | |
if block_idx == len(blocks) - 1 and additional_residuals is not None: | |
if hidden_states.dim() == 5: | |
additional_residuals = rearrange(additional_residuals, '(b f) c h w -> b c f h w', b=hidden_states.shape[0]) | |
hidden_states = hidden_states + additional_residuals | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class UpBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
) | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
class CrossAttnUpBlockSpatioTemporal(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
add_upsample: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
) | |
) | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
pose_feature: Optional[torch.Tensor] = None # [bs, c, frame, h, w] | |
) -> torch.FloatTensor: | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
pose_feature=pose_feature, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
pose_feature=pose_feature, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |