|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.vectorstores import FAISS |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.llms import OpenAI |
|
from gradio import gradio as gr |
|
from langchain.chat_models import ChatOpenAI |
|
|
|
from langchain.schema import AIMessage, HumanMessage |
|
from langchain import PromptTemplate, LLMChain |
|
from langchain.llms import TextGen |
|
|
|
|
|
|
|
import os |
|
OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') |
|
|
|
|
|
text_splitter = CharacterTextSplitter( |
|
separator="\n", |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len |
|
) |
|
|
|
texts = text_splitter.split_text("./output_1.txt") |
|
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
|
|
docsearch = FAISS.from_texts(texts, embeddings) |
|
|
|
model_url = "http://36.103.234.50:5000" |
|
|
|
llm = TextGen(model_url=model_url) |
|
|
|
chain = load_qa_chain(llm) |
|
|
|
def predict(message, history): |
|
history_langchain_format = [] |
|
for human, ai in history: |
|
history_langchain_format.append(HumanMessage(content=human)) |
|
history_langchain_format.append(AIMessage(content=ai)) |
|
history_langchain_format.append(HumanMessage(content=message)) |
|
docs = docsearch.similarity_search(message) |
|
response = chain.run(input_documents=docs, question=message) |
|
|
|
|
|
partial_message = "" |
|
for chunk in response: |
|
if len(chunk) != 0: |
|
partial_message = partial_message + chunk |
|
yield partial_message |
|
|
|
|
|
return response |
|
|
|
gr.ChatInterface(predict).queue().launch() |
|
|
|
|