# coding: utf-8 # Copyright 2019 Sinovation Ventures AI Institute # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """utils for ngram for ZEN model.""" import os import logging from transformers import cached_path NGRAM_DICT_NAME = 'ngram.txt' logger = logging.getLogger(__name__) PRETRAINED_VOCAB_ARCHIVE_MAP = {'IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese/resolve/main/ngram.txt'} class ZenNgramDict(object): """ Dict class to store the ngram """ def __init__(self, ngram_freq_path, tokenizer, max_ngram_in_seq=128): """Constructs ZenNgramDict :param ngram_freq_path: ngrams with frequency """ if os.path.isdir(ngram_freq_path): ngram_freq_path = os.path.join(ngram_freq_path, NGRAM_DICT_NAME) self.ngram_freq_path = ngram_freq_path self.max_ngram_in_seq = max_ngram_in_seq self.id_to_ngram_list = ["[pad]"] self.ngram_to_id_dict = {"[pad]": 0} self.ngram_to_freq_dict = {} logger.info("loading ngram frequency file {}".format(ngram_freq_path)) with open(ngram_freq_path, "r", encoding="utf-8") as fin: for i, line in enumerate(fin): ngram, freq = line.split(",") tokens = tuple(tokenizer.tokenize(ngram)) self.ngram_to_freq_dict[ngram] = freq self.id_to_ngram_list.append(tokens) self.ngram_to_id_dict[tokens] = i + 1 @classmethod def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. """ if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: ngram_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is a cased model but you have not set " "`do_lower_case` to False. We are setting `do_lower_case=False` for you but " "you may want to check this behavior.") kwargs['do_lower_case'] = False elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True): logger.warning("The pre-trained model you are loading is an uncased model but you have set " "`do_lower_case` to False. We are setting `do_lower_case=True` for you " "but you may want to check this behavior.") kwargs['do_lower_case'] = True else: ngram_file = pretrained_model_name_or_path if os.path.isdir(ngram_file): ngram_file = os.path.join(ngram_file, NGRAM_DICT_NAME) # redirect to the cache, if necessary try: resolved_ngram_file = cached_path(ngram_file, cache_dir=cache_dir) except EnvironmentError: if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: logger.error( "Couldn't reach server at '{}' to download vocabulary.".format( ngram_file)) else: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), ngram_file)) return None if resolved_ngram_file == ngram_file: logger.info("loading vocabulary file {}".format(ngram_file)) else: logger.info("loading vocabulary file {} from cache at {}".format( ngram_file, resolved_ngram_file)) # Instantiate ngram. ngram_dict = cls(resolved_ngram_file, **kwargs) return ngram_dict def save(self, ngram_freq_path): with open(ngram_freq_path, "w", encoding="utf-8") as fout: for ngram, freq in self.ngram_to_freq_dict.items(): fout.write("{},{}\n".format(ngram, freq))