[**中文**](./README.md) # TCBert 论文 《[TCBERT: A Technical Report for Chinese Topic Classification BERT](https://arxiv.org/abs/2211.11304)》源码 ## Requirements 安装 fengshen 框架 ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git cd Fengshenbang-LM pip install --editable . ``` ## Quick Start 你可以参考我们的 [example.py](./example.py) 脚本,只需要将处理好的 ```train_data```、```dev_data```、```test_data```、 ```prompt```、```prompt_label``` ,输入模型即可。 ```python import argparse from fengshen.pipelines.tcbert import TCBertPipelines from pytorch_lightning import seed_everything total_parser = argparse.ArgumentParser("Topic Classification") total_parser = TCBertPipelines.piplines_args(total_parser) args = total_parser.parse_args() pretrained_model_path = 'IDEA-CCNL/Erlangshen-TCBert-110M-Classification-Chinese' args.learning_rate = 2e-5 args.max_length = 512 args.max_epochs = 3 args.batchsize = 1 args.train = 'train' args.default_root_dir = './' # args.gpus = 1 #注意:目前使用CPU进行训练,取消注释会使用GPU,但需要配置相应GPU环境版本 args.fixed_lablen = 2 #注意:可以设置固定标签长度,由于样本对应的标签长度可能不一致,建议选择合适的数值表示标签长度 train_data = [ {"content": "凌云研发的国产两轮电动车怎么样,有什么惊喜?", "label": "科技",} ] dev_data = [ {"content": "我四千一个月,老婆一千五一个月,存款八万且有两小孩,是先买房还是先买车?","label": "汽车",} ] test_data = [ {"content": "街头偶遇2018款长安CS35,颜值美炸!或售6万起,还买宝骏510?"} ] prompt = "下面是一则关于{}的新闻:" prompt_label = {"汽车":"汽车", "科技":"科技"} model = TCBertPipelines(args, model_path=pretrained_model_path, nlabels=len(prompt_label)) if args.train: model.train(train_data, dev_data, prompt, prompt_label) result = model.predict(test_data, prompt, prompt_label) ``` ## Pretrained Model 为了提高模型在话题分类上的效果,我们收集了大量话题分类数据进行基于`prompt`的预训练。我们已经将预训练模型开源到 ```HuggingFace``` 社区当中。 | 模型 | 地址 | |:---------:|:--------------:| | Erlangshen-TCBert-110M-Classification-Chinese | [https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-110M-Classification-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-110M-Classification-Chinese) | | Erlangshen-TCBert-330M-Classification-Chinese | [https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-330M-Classification-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-330M-Classification-Chinese) | | Erlangshen-TCBert-1.3B-Classification-Chinese | [https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-1.3B-Classification-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-1.3B-Classification-Chinese) | | Erlangshen-TCBert-110M-Sentence-Embedding-Chinese | [https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-110M-Sentence-Embedding-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-110M-Sentence-Embedding-Chinese) | | Erlangshen-TCBert-330M-Sentence-Embedding-Chinese | [https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-330M-Sentence-Embedding-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-330M-Sentence-Embedding-Chinese) | | Erlangshen-TCBert-1.3B-Sentence-Embedding-Chinese | [https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-1.3B-Sentence-Embedding-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-TCBert-1.3B-Sentence-Embedding-Chinese) | ## Experiments 对每个不同的数据集,选择合适的模板```Prompt``` Dataset | Prompt |------------|------------| | TNEWS | 下面是一则关于{}的新闻: | | CSLDCP | 这一句描述{}的内容如下: | | IFLYTEK | 这一句描述{}的内容如下: | 使用上述```Prompt```的实验结果如下: | Model | TNEWS | CLSDCP | IFLYTEK | |------------|------------|----------|-----------| | Macbert-base | 55.02 | 57.37 | 51.34 | | Macbert-large | 55.77 | 58.99 | 50.31 | | Erlangshen-1.3B | 57.36 | 62.35 | 53.23 | | TCBert-base-110M-Classification-Chinese | 55.57 | 58.60 | 49.63 | | TCBert-large-330M-Classification-Chinese | 56.17 | 61.23 | 51.34 | | TCBert-1.3B-Classification-Chinese | 57.41 | 65.10 | 53.75 | | TCBert-base-110M-Sentence-Embedding-Chinese | 54.68 | 59.78 | 49.40 | | TCBert-large-330M-Sentence-Embedding-Chinese | 55.32 | 62.07 | 51.11 | | TCBert-1.3B-Sentence-Embedding-Chinese | 57.46 | 65.04 | 53.06 | ## Dataset 需要您提供:```训练集```、```验证集```、```测试集```、```Prompt```、```标签映射```五个数据,对应的数据格式如下: #### 训练数据 示例 必须包含```content```和```label```字段 ```json [{ "content": "街头偶遇2018款长安CS35,颜值美炸!或售6万起,还买宝骏510?", "label": "汽车" }] ``` #### 验证数据 示例 必须包含```content```和```label```字段 ```json [{ "content": "宁夏邀深圳市民共赴“寻找穿越”之旅", "label": "旅游" }] ``` #### 测试数据 示例 必须包含```content```字段 ```json [{ "content": "买涡轮增压还是自然吸气车?今天终于有答案了!" }] ``` #### Prompt 示例 可以选择任一模版,模版的选择会对模型效果产生影响,其中必须包含```{}```,作为标签占位符 ```json "下面是一则关于{}的新闻:" ``` #### 标签映射 示例 可以将真实标签映射为更合适Prompt的标签,支持映射后的标签长度不一致 ```json { "汽车": "汽车", "旅游": "旅游", "经济生活": "经济生活", "房产新闻": "房产" } ``` ## License [Apache License 2.0](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/LICENSE)