# -*- encoding: utf-8 -*- ''' Copyright 2022 The International Digital Economy Academy (IDEA). CCNL team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @File : qa_dataset.py @Time : 2022/10/28 19:57 @Author : He Junqing @Version : 1.0 @Contact : hejunqing@idea.edu.cn @License : (C)Copyright 2022-2023, CCNL-IDEA ''' # here put the import lib from dataclasses import dataclass import numpy as np import torch from torch.nn.utils.rnn import pad_sequence from fengshen.data.t5_dataloader.t5_gen_datasets import DialogDataset class T5StyleDataset(DialogDataset): @staticmethod def add_data_specific_args(parent_args): parser = parent_args.add_argument_group("Dataset") parser.add_argument("--max_seq_length", default=512, type=int) parser.add_argument("--max_knowledge_length", default=128, type=int) parser.add_argument("--max_target_length", default=128, type=int) return parent_args def regular_tokenize(self, sample): """ sample.keys:question:str,context:stc, answer:[],idx:int,ans_span:[] """ plain_text = ( "question:" + sample["question"] + "knowledge:" + sample["context"][: self.max_knowledge_length] ) l_text = len(plain_text) ctx_len = self.max_seq_length - l_text - 1 if ctx_len > 0 and "history" in sample: context = "[SEP]".join(sample["history"]) plain_text += "context:" + context res_prefix = self.tokenizer.encode("answer:", add_special_tokens=False) # res_prefix.tolist() l_rp = len(res_prefix) tokenized = self.tokenizer.encode( plain_text, add_special_tokens=False, truncation=True, max_length=self.max_seq_length - 2 - l_rp, ) # tokenized.tolist() tokenized += res_prefix # add maskid mask_id = self.tokenizer.convert_tokens_to_ids("") tokenized.append(mask_id) tokenized.append(self.eos_token_id) # print(tokenized) target_ids = self.tokenizer.encode( "" + sample["answer"][0], add_special_tokens=True, truncation=True, max_length=self.max_target_length, ) # print(target_ids) tokenized_sample = {} tokenized_sample["input_ids"] = np.array(tokenized, dtype=np.int32) tokenized_sample["attention_mask"] = np.ones(len(tokenized), dtype=np.int8) tokenized_sample["labels"] = np.array(target_ids, dtype=np.int32) tokenized_sample["idx"] = sample["idx"] # print(tokenized_sample) return tokenized_sample @dataclass class TextGenCollator: ''' ''' config: None pad_token_id: -100 decoder_start_token_id: 0 formator: str = 't5style' def setup(self): pass def __call__(self, samples): batch = { k: [ torch.tensor(samples[i][k], dtype=torch.int64) for i in range(len(samples)) ] for k in ["input_ids", "attention_mask", "labels"] } batch["idx"] = torch.tensor([samples[i]["idx"] for i in range(len(samples))]) # print(batch) for k, v in batch.items(): if k != "labels" and k != "idx": batch[k] = pad_sequence( v, batch_first=True, padding_value=self.pad_token_id ) elif k == "labels": batch[k] = pad_sequence(v, batch_first=True, padding_value=-100) batch["decoder_input_ids"] = torch.tensor( self.shift_tokens_right( batch["labels"], self.pad_token_id, self.decoder_start_token_id ), dtype=torch.long, ) return batch def shift_tokens_right( self, input_ids: np.array, pad_token_id: int, decoder_start_token_id: int ) -> np.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros_like(input_ids) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id shifted_input_ids = np.where( shifted_input_ids == -100, pad_token_id, shifted_input_ids ) return shifted_input_ids if __name__ == "__main__": # test import argparse total_parser = argparse.ArgumentParser("DATASET parser") total_parser.add_argument( "--tokenizer_type", default="t5_tokenizer", choices=["bert_tokenizer", "t5_tokenizer"], ) total_parser.add_argument("--preprocessing_num_workers", default="4", type=int) total_parser.add_argument( "--new_vocab_path", default=None, type=str, ) total_parser.add_argument( "--pretrained_model_path", default="YOUR DOWNLOAD MODEL PATH", ) total_parser.add_argument("--train_split_size", default=0.995, type=int) total_parser.add_argument( "--formator", default="t5style", choices=["t5style", "squad", "dialog"] ) total_parser = TextGenCollator.add_data_specific_args(total_parser) args = total_parser.parse_args() args.train_data_path = "cmrc" ds = T5StyleDataset("cmrc", args, "dev") print(len(ds)) for i in range(10): print(ds[i]) dl = TextGenCollator(args) for i in range(5): for batch in dl.val_dataloader(): print(batch) print(batch["input_ids"]) print(batch["no_answer"]) print(batch["decoder_input_ids"]) print(batch["labels"])